Solveeit Logo

Question

Question: The value of the determinant ∆= \(\left| \begin{matrix} \log x & \log y & \log z \\ \log 2x & \log 2...

The value of the determinant ∆= logxlogylogzlog2xlog2ylog2zlog3xlog3ylog3z\left| \begin{matrix} \log x & \log y & \log z \\ \log 2x & \log 2y & \log 2z \\ \log 3x & \log 3y & \log 3z \end{matrix} \right| is –

A

0

B

log (xyz)

C

log (6xyz)

D

6 log(xyz)

Answer

0

Explanation

Solution

∆= 6mulogxlogylogzlog2+logxlog2+logylog2+logzlog3+logxlog3+logylog3+logz6mu\left| \mspace{6mu}\begin{matrix} \log x & \log y & \log z \\ \log 2 + \log x & \log 2 + \log y & \log 2 + \log z \\ \log 3 + \log x & \log 3 + \log y & \log 3 + \log z \end{matrix}\mspace{6mu} \right| R2 → R2 – R1 ,

R3 → R3 – R1

∆ = 6mulogxlogylogzlog2log2log2log3log3log36mu\left| \mspace{6mu}\begin{matrix} \log x & \log y & \log z \\ \log 2 & \log 2 & \log 2 \\ \log 3 & \log 3 & \log 3 \end{matrix}\mspace{6mu} \right|

= (log 2) (log3) 6mulogxlogylogz1111116mu\left| \mspace{6mu}\begin{matrix} \log x & \log y & \log z \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{matrix}\mspace{6mu} \right| = 0