Question
Question: The value of the determinant ∆= \(\left| \begin{matrix} \log x & \log y & \log z \\ \log 2x & \log 2...
The value of the determinant ∆= logxlog2xlog3xlogylog2ylog3ylogzlog2zlog3z is –
A
0
B
log (xyz)
C
log (6xyz)
D
6 log(xyz)
Answer
0
Explanation
Solution
∆= 6mulogxlog2+logxlog3+logxlogylog2+logylog3+logylogzlog2+logzlog3+logz6mu R2 → R2 – R1 ,
R3 → R3 – R1
∆ = 6mulogxlog2log3logylog2log3logzlog2log36mu
= (log 2) (log3) 6mulogx11logy11logz116mu = 0