Solveeit Logo

Question

Question: The value of the determinant \(\left| \begin{matrix} 1 & a & b + c \\ 1 & b & c + a \\ 1 & c & a + b...

The value of the determinant 1ab+c1bc+a1ca+b\left| \begin{matrix} 1 & a & b + c \\ 1 & b & c + a \\ 1 & c & a + b \end{matrix} \right|is.

A

a+b+ca + b + c

B

(a+b+c)2(a + b + c)^{2}

C

0

D

1+a+b+c1 + a + b + c

Answer

0

Explanation

Solution

Δ=1ab+c1bc+a1ca+b=(a+b+c)11b+c11c+a11a+b\Delta = \left| \begin{matrix} 1 & a & b + c \\ 1 & b & c + a \\ 1 & c & a + b \end{matrix} \right| = (a + b + c)\left| \begin{matrix} 1 & 1 & b + c \\ 1 & 1 & c + a \\ 1 & 1 & a + b \end{matrix} \right|

(C2C2+C3)(C_{2} \rightarrow C_{2} + C_{3})

= 0, (C1C2)(\because C_{1} \equiv C_{2}).