Solveeit Logo

Question

Question: The value of the determinant \(\left| \begin{matrix} 1 & 1 & 1 \\ b + c & c + a & a + b \\ b + c - a...

The value of the determinant 111b+cc+aa+bb+cac+aba+bc\left| \begin{matrix} 1 & 1 & 1 \\ b + c & c + a & a + b \\ b + c - a & c + a - b & a + b - c \end{matrix} \right| is.

A

abc

B

a+b+ca + b + c

C

ab+bc+caab + bc + ca

D

None of these

Answer

None of these

Explanation

Solution

111b+cc+aa+bb+cac+aba+bc\left| \begin{matrix} 1 & 1 & 1 \\ b + c & c + a & a + b \\ b + c - a & c + a - b & a + b - c \end{matrix} \right|

= 001bacba+b2(ba)2(cb)a+bc=0\left| \begin{matrix} 0 & 0 & 1 \\ b - a & c - b & a + b \\ 2(b - a) & 2(c - b) & a + b - c \end{matrix} \right| = 0.