Question
Question: The value of the determinant \(\left| \begin{matrix} 0 & b^{3} - a^{3} & c^{3} - a^{3} \\ a^{3} - b^...
The value of the determinant 0a3−b3a3−c3b3−a30b3−c3c3−a3c3−b30 is equal to.
A
a3+b3+c3
B
a3−b3−c3
C
0
D
−a3+b3+c3
Answer
0
Explanation
Solution
0a3−b3a3−c3b3−a30b3−c3c3−a3c3−b30
0 & 1 & 1 \\ a^{3} - b^{3} & 1 & 1 \\ a^{3} - c^{3} & 1 & 1 \end{matrix} \right| = 0$$ $\lbrack C_{2} \rightarrow C_{2} - C_{1}$ and $C_{3} \rightarrow C_{3} - C_{1}\rbrack$ and then taking out common $(b^{2} - a^{3})$ from II<sup>nd</sup> column and ( $c^{3} - a^{3}$) from III<sup>rd</sup> column\].