Solveeit Logo

Question

Question: The value of the determinant \(\left| \begin{matrix} 0 & b^{3} - a^{3} & c^{3} - a^{3} \\ a^{3} - b^...

The value of the determinant 0b3a3c3a3a3b30c3b3a3c3b3c30\left| \begin{matrix} 0 & b^{3} - a^{3} & c^{3} - a^{3} \\ a^{3} - b^{3} & 0 & c^{3} - b^{3} \\ a^{3} - c^{3} & b^{3} - c^{3} & 0 \end{matrix} \right| is equal to.

A

a3+b3+c3a^{3} + b^{3} + c^{3}

B

a3b3c3a^{3} - b^{3} - c^{3}

C

0

D

a3+b3+c3- a^{3} + b^{3} + c^{3}

Answer

0

Explanation

Solution

0b3a3c3a3a3b30c3b3a3c3b3c30\left| \begin{matrix} 0 & b^{3} - a^{3} & c^{3} - a^{3} \\ a^{3} - b^{3} & 0 & c^{3} - b^{3} \\ a^{3} - c^{3} & b^{3} - c^{3} & 0 \end{matrix} \right|

0 & 1 & 1 \\ a^{3} - b^{3} & 1 & 1 \\ a^{3} - c^{3} & 1 & 1 \end{matrix} \right| = 0$$ $\lbrack C_{2} \rightarrow C_{2} - C_{1}$ and $C_{3} \rightarrow C_{3} - C_{1}\rbrack$ and then taking out common $(b^{2} - a^{3})$ from II<sup>nd</sup> column and ( $c^{3} - a^{3}$) from III<sup>rd</sup> column\].