Solveeit Logo

Question

Question: The value of the determinant \(\left| \begin{matrix} ^{5}{{C}_{0}} & ^{5}{{C}_{3}} & 14 \\\ ...

The value of the determinant 5C05C314 5C15C41 5C25C51 \left| \begin{matrix} ^{5}{{C}_{0}} & ^{5}{{C}_{3}} & 14 \\\ ^{5}{{C}_{1}} & ^{5}{{C}_{4}} & 1 \\\ ^{5}{{C}_{2}} & ^{5}{{C}_{5}} & 1 \\\ \end{matrix} \right| is
A) 0\text{A) 0}
B) -576\text{B) -576}
C) 80\text{C) 80}
D) none of these\text{D) none of these}

Explanation

Solution

In this question we have a determinant of 99 terms which we will solve as a determinant by taking the modulus value of the determinant. In the terms of the determinant, we have terms which are expressed in the form of the combination. We will use the combination formula which is nCr=n!(nr)!r!^{n}{{C}_{r}}=\dfrac{n!}{(n-r)!r!} to simplify the terms.

Complete step by step solution:
We have the determinant given as 5C05C314 5C15C41 5C25C51 \left| \begin{matrix} ^{5}{{C}_{0}} & ^{5}{{C}_{3}} & 14 \\\ ^{5}{{C}_{1}} & ^{5}{{C}_{4}} & 1 \\\ ^{5}{{C}_{2}} & ^{5}{{C}_{5}} & 1 \\\ \end{matrix} \right|.
Let’s consider the given determinant to be A\text{A} therefore, we can write it mathematically as:
A=5C05C314 5C15C41 5C25C51 \Rightarrow \text{A}=\left| \begin{matrix} ^{5}{{C}_{0}} & ^{5}{{C}_{3}} & 14 \\\ ^{5}{{C}_{1}} & ^{5}{{C}_{4}} & 1 \\\ ^{5}{{C}_{2}} & ^{5}{{C}_{5}} & 1 \\\ \end{matrix} \right|
Now consider the general form of a 3×33\times 3 matrix which is a11a12a13 a21a22a23 a31a32a33 \left| \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\\ \end{matrix} \right|. Now from this matrix we can solve the terms in the determinant before taking the value of the determinant which is denoted as  !!!! A !!!! \text{ }\\!\\!|\\!\\!\text{ A }\\!\\!|\\!\\!\text{ }
Now consider the term a11{{a}_{11}}:
a11=5C0\Rightarrow {{a}_{11}}{{=}^{5}}{{C}_{0}}
Using the formula, we get:
a11=5!(50)!0!=5!5!=1\Rightarrow {{a}_{11}}=\dfrac{5!}{(5-0)!0!}=\dfrac{5!}{5!}=1
Now consider the term a12{{a}_{12}}:
a12=5C3\Rightarrow {{a}_{12}}{{=}^{5}}{{C}_{3}}
Using the formula, we get:
a12=5!(53)!3!=5!2!3!=5×42×1=10\Rightarrow {{a}_{12}}=\dfrac{5!}{(5-3)!3!}=\dfrac{5!}{2!3!}=\dfrac{5\times 4}{2\times 1}=10
Now consider the term a21{{a}_{21}}:
a21=5C1\Rightarrow {{a}_{21}}{{=}^{5}}{{C}_{1}}
Using the formula, we get:
a21=5!(51)!1!=5!4!=5\Rightarrow {{a}_{21}}=\dfrac{5!}{(5-1)!1!}=\dfrac{5!}{4!}=5
Now consider the term a22{{a}_{22}}:
a22=5C4\Rightarrow {{a}_{22}}{{=}^{5}}{{C}_{4}}
Using the formula, we get:
a22=5!(54)!4!=5!4!=5\Rightarrow {{a}_{22}}=\dfrac{5!}{(5-4)!4!}=\dfrac{5!}{4!}=5
Now consider the term a31{{a}_{31}}:
a31=5C2\Rightarrow {{a}_{31}}{{=}^{5}}{{C}_{2}}
Using the formula, we get:
a22=5!(52)!2!=5!3!2!=5×42×1=10\Rightarrow {{a}_{22}}=\dfrac{5!}{(5-2)!2!}=\dfrac{5!}{3!2!}=\dfrac{5\times 4}{2\times 1}=10
Now consider the term a32{{a}_{32}}:
a32=5C5\Rightarrow {{a}_{32}}{{=}^{5}}{{C}_{5}}
Using the formula, we get:
a32=5!(55)!5!=5!5!=1\Rightarrow {{a}_{32}}=\dfrac{5!}{(5-5)!5!}=\dfrac{5!}{5!}=1
Now on putting all the values in the determinant A\text{A}, we get:
A=11014 551 1011 \Rightarrow \text{A}=\left| \begin{matrix} 1 & 10 & 14 \\\ 5 & 5 & 1 \\\ 10 & 1 & 1 \\\ \end{matrix} \right|
Now on solving the determinant, we get:
A=151 11 1051 101 +1455 101 \Rightarrow \left| \text{A} \right|=1\left| \begin{matrix} 5 & 1 \\\ 1 & 1 \\\ \end{matrix} \right|-10\left| \begin{matrix} 5 & 1 \\\ 10 & 1 \\\ \end{matrix} \right|+14\left| \begin{matrix} 5 & 5 \\\ 10 & 1 \\\ \end{matrix} \right|
Now on simplifying the values in the sub-determinant, we get:
A=1(5×11×1)10(5×110×1)+14(5×15×10)\Rightarrow \left| \text{A} \right|=1(5\times 1-1\times 1)-10(5\times 1-10\times 1)+14(5\times 1-5\times 10)
Now on multiplying the terms, we get:
A=1(51)10(510)+14(550)\Rightarrow \left| \text{A} \right|=1(5-1)-10(5-10)+14(5-50)
On simplifying the brackets, we get:
A=1(4)10(5)+14(45)\Rightarrow \left| \text{A} \right|=1(4)-10(-5)+14(-45)
On multiplying the terms, we get:
A=4+50630\Rightarrow \left| \text{A} \right|=4+50-630
On simplifying, we get:
A=576\Rightarrow \left| \text{A} \right|=-576, which is the required solution.
Therefore, the correct option is (A)\text{(A)}.

Note: In this question we have used the combination formula which tells us the combination of terms when the order of the terms does not matter. There also exists the permutation formula which is nPr=n!(nr)!^{n}{{P}_{r}}=\dfrac{n!}{(n-r)!}. In case of permutation, the order of the terms matter. The !! sign is the factorial sign which indicates the product of an integer and all the integers below it up to the integer 11.