Solveeit Logo

Question

Question: The value of the determinant \(\left| \begin{matrix} ^{5}{{C}_{0}} & ^{5}{{C}_{3}} & 14 \\\ ...

The value of the determinant 5C05C314 5C15C41 5C25C51 \left| \begin{matrix} ^{5}{{C}_{0}} & ^{5}{{C}_{3}} & 14 \\\ ^{5}{{C}_{1}} & ^{5}{{C}_{4}} & 1 \\\ ^{5}{{C}_{2}} & ^{5}{{C}_{5}} & 1 \\\ \end{matrix} \right| is
(A) 00
(B) 576-576
(C) 8080
(D) None of these

Explanation

Solution

For answering this question we need to simplify the matrix by applying the combinations formulae nCr=n!r!(nr)!^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!} and derive the determinant of the given matrix 5C05C314 5C15C41 5C25C51 \left| \begin{matrix} ^{5}{{C}_{0}} & ^{5}{{C}_{3}} & 14 \\\ ^{5}{{C}_{1}} & ^{5}{{C}_{4}} & 1 \\\ ^{5}{{C}_{2}} & ^{5}{{C}_{5}} & 1 \\\ \end{matrix} \right| by simplifying the minors and cofactors.

Complete step by step answer:
Now we have the matrix 5C05C314 5C15C41 5C25C51 \left| \begin{matrix} ^{5}{{C}_{0}} & ^{5}{{C}_{3}} & 14 \\\ ^{5}{{C}_{1}} & ^{5}{{C}_{4}} & 1 \\\ ^{5}{{C}_{2}} & ^{5}{{C}_{5}} & 1 \\\ \end{matrix} \right| from the question by using the combinations nCr=n!r!(nr)!^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!} and simplifying the matrix.
For simplifying let us calculate the individual value of the combinations. The values are as follows:
5C0=5!0!(50)!=1^{5}{{C}_{0}}=\dfrac{5!}{0!\left( 5-0 \right)!}=1
5C1=5!1!(51)!=5^{5}{{C}_{1}}=\dfrac{5!}{1!\left( 5-1 \right)!}=5
5C2=5!2!(52)!=10^{5}{{C}_{2}}=\dfrac{5!}{2!\left( 5-2 \right)!}=10
5C3=5!3!(53)!=10^{5}{{C}_{3}}=\dfrac{5!}{3!\left( 5-3 \right)!}=10
5C4=5!4!(51)!=5^{5}{{C}_{4}}=\dfrac{5!}{4!\left( 5-1 \right)!}=5
5C5=5!5!(55)!=1^{5}{{C}_{5}}=\dfrac{5!}{5!\left( 5-5 \right)!}=1
By substituting these values in the matrix we have 5C05C314 5C15C41 5C25C51 \left| \begin{matrix} ^{5}{{C}_{0}} & ^{5}{{C}_{3}} & 14 \\\ ^{5}{{C}_{1}} & ^{5}{{C}_{4}} & 1 \\\ ^{5}{{C}_{2}} & ^{5}{{C}_{5}} & 1 \\\ \end{matrix} \right| we will get the simplified matrix 11014 551 1011 \left| \begin{matrix} 1 & 10 & 14 \\\ 5 & 5 & 1 \\\ 10 & 1 & 1 \\\ \end{matrix} \right|.
The minor of aij{{a}_{ij}} is represented by Mij{{M}_{ij}} and for example for any 3×33\times 3 matrix the minor of a21{{a}_{21}} is represented by M21{{M}_{21}} and is given by a12a13 a32a23 \left| \begin{matrix} {{a}_{12}} & {{a}_{13}} \\\ {{a}_{32}} & {{a}_{23}} \\\ \end{matrix} \right|.
The cofactor of aij{{a}_{ij}} is represented by Cij{{C}_{ij}} is given byCij=(1)i+jMij{{C}_{ij}}={{\left( -1 \right)}^{i+j}}{{M}_{ij}} .
The determinant of any 3×33\times 3 matrix is given by
=a11C11+a12C12+a13C13 a21C21+a22C22+a23C23 a31C31+a32C32+a33C33 \begin{aligned} & ={{a}_{11}}{{C}_{11}}+{{a}_{12}}{{C}_{12}}+{{a}_{13}}{{C}_{13}} \\\ & \Rightarrow {{a}_{21}}{{C}_{21}}+{{a}_{22}}{{C}_{22}}+{{a}_{23}}{{C}_{23}} \\\ & \Rightarrow {{a}_{31}}{{C}_{31}}+{{a}_{32}}{{C}_{32}}+{{a}_{33}}{{C}_{33}} \\\ \end{aligned}
We can use any of the above three formulas.
Let us derive the determinant of this matrix. For that we will initially derive the minors of the matrix. After that we will have it as:
11014 551 1011 =151 11 1051 101 +1455 101 \left| \begin{matrix} 1 & 10 & 14 \\\ 5 & 5 & 1 \\\ 10 & 1 & 1 \\\ \end{matrix} \right|=1\left| \begin{matrix} 5 & 1 \\\ 1 & 1 \\\ \end{matrix} \right|-10\left| \begin{matrix} 5 & 1 \\\ 10 & 1 \\\ \end{matrix} \right|+14\left| \begin{matrix} 5 & 5 \\\ 10 & 1 \\\ \end{matrix} \right|.
After performing the further simplifications we will have
1(51)10(510)+14(550)1\left( 5-1 \right)-10\left( 5-10 \right)+14\left( 5-50 \right) .
By further performing the calculations it will be reduced as
1(4)10(5)+14(45) 4+50630 576 \begin{aligned} & 1\left( 4 \right)-10\left( -5 \right)+14\left( -45 \right) \\\ & \Rightarrow 4+50-630 \\\ & \Rightarrow -576 \\\ \end{aligned}.
Hence we can conclude that the value of the determinant 5C05C314 5C15C41 5C25C51 \left| \begin{matrix} ^{5}{{C}_{0}} & ^{5}{{C}_{3}} & 14 \\\ ^{5}{{C}_{1}} & ^{5}{{C}_{4}} & 1 \\\ ^{5}{{C}_{2}} & ^{5}{{C}_{5}} & 1 \\\ \end{matrix} \right| is given as 576-576.

So, the correct answer is “Option B”.

Note: While answering this type of question we should be clear with the calculations. For example if we had made a mistake while calculating the determinant and had taken it as 4+506204+50-620 we will end up having a complete wrong answer as 566-566 . Another common mistake is interchanging the cofactors while expanding the determinant. So, perform this carefully.