Solveeit Logo

Question

Mathematics Question on Determinants

The value of the determinant 15!16!17! 16!17!18! 17!18!19! \left| \begin{matrix} 15! & 16! & 17! \\\ 16! & 17! & 18! \\\ 17! & 18! & 19! \\\ \end{matrix} \right| is equal to

A

15!+16!15!+16!

B

2(15!)(16!)(17!)2(15!)(16!)(17!)

C

15!+16!+17!15!+16!+17!

D

16!+17!16!+17!

Answer

2(15!)(16!)(17!)2(15!)(16!)(17!)

Explanation

Solution

15!16!17! 16!17!18! 17!18!19! \left| \begin{matrix} 15! & 16! & 17! \\\ 16! & 17! & 18! \\\ 17! & 18! & 19! \\\ \end{matrix} \right|
=(15!)(16!)(17!)11617.16 11718.17 11819.18 =(15!)(16!)(17!)\left| \begin{matrix} 1 & 16 & 17.16 \\\ 1 & 17 & 18.17 \\\ 1 & 18 & 19.18 \\\ \end{matrix} \right|
=(15!)(16!)(17!)116272 117306 118342 =(15!)(16!)(17!)\left| \begin{matrix} 1 & 16 & 272 \\\ 1 & 17 & 306 \\\ 1 & 18 & 342 \\\ \end{matrix} \right|
=(15!)(16!)(17!)0270 0136 118342 =(15!)(16!)(17!)\left| \begin{matrix} 0 & 2 & 70 \\\ 0 & 1 & 36 \\\ 1 & 18 & 342 \\\ \end{matrix} \right|
=(15!)(16!)(17!)[1(7270)]=(15!)(16!)(17!)[1-(72-70)]
=2(15!)(16!)(17!)=2(15!)(16!)(17!)