Solveeit Logo

Question

Question: The value of the determinant D= \(\left| \begin{matrix} a^{2} & a & 1 \\ \cos(nx) & \cos(n + 1)x & ...

The value of the determinant

D= a2a1cos(nx)cos(n+1)xcos(n+2)xsinnxsin(n+1)xsin(n+2)x\left| \begin{matrix} a^{2} & a & 1 \\ \cos(nx) & \cos(n + 1)x & \cos(n + 2)x \\ \sin nx & \sin(n + 1)x & \sin(n + 2)x \end{matrix} \right|is independent of –

A

n

B

a

C

x

D

None of these

Answer

n

Explanation

Solution

D=a2[sin[(n+2)x–(n+1)x]]–a[sin[n + 2) x]

–(nx)]] +1.[sin[(n+1)x)–(nx)]]

 D = a2 (sinx)–a.sin(2x)+sin (x)