Question
Question: The value of the determinant D= \(\left| \begin{matrix} a^{2} & a & 1 \\ \cos(nx) & \cos(n + 1)x & ...
The value of the determinant
D= a2cos(nx)sinnxacos(n+1)xsin(n+1)x1cos(n+2)xsin(n+2)xis independent of –
A
n
B
a
C
x
D
None of these
Answer
n
Explanation
Solution
D=a2[sin[(n+2)x–(n+1)x]]–a[sin[n + 2) x]
–(nx)]] +1.[sin[(n+1)x)–(nx)]]
D = a2 (sinx)–a.sin(2x)+sin (x)