Solveeit Logo

Question

Question: The value of the determinant $\begin{vmatrix}1 & 1 & 1 \\ 1+x & 1 & 1 \\ 1 & 1+y & 1\end{vmatrix}$....

The value of the determinant 1111+x1111+y1\begin{vmatrix}1 & 1 & 1 \\ 1+x & 1 & 1 \\ 1 & 1+y & 1\end{vmatrix}.

A

0 x2+y2x^2+y^2

B

0 0

C

0 xyxy

D

0 1+x+y1+x+y

Answer

xyxy

Explanation

Solution

To find the value of the determinant 1111+x1111+y1\begin{vmatrix}1 & 1 & 1 \\ 1+x & 1 & 1 \\ 1 & 1+y & 1\end{vmatrix}, we can use elementary row operations to simplify it.

Let the given determinant be DD. D=1111+x1111+y1D = \begin{vmatrix}1 & 1 & 1 \\ 1+x & 1 & 1 \\ 1 & 1+y & 1\end{vmatrix}

Apply the row operations:

  1. R2R2R1R_2 \rightarrow R_2 - R_1 (Subtract the first row from the second row)
  2. R3R3R1R_3 \rightarrow R_3 - R_1 (Subtract the first row from the third row)

After applying R2R2R1R_2 \rightarrow R_2 - R_1: The new second row elements will be: (1+x)1=x(1+x) - 1 = x 11=01 - 1 = 0 11=01 - 1 = 0 So, the second row becomes (x,0,0)(x, 0, 0).

After applying R3R3R1R_3 \rightarrow R_3 - R_1: The new third row elements will be: 11=01 - 1 = 0 (1+y)1=y(1+y) - 1 = y 11=01 - 1 = 0 So, the third row becomes (0,y,0)(0, y, 0).

The determinant now simplifies to: D=111x000y0D = \begin{vmatrix}1 & 1 & 1 \\ x & 0 & 0 \\ 0 & y & 0\end{vmatrix}

Now, expand the determinant along the second row (R2R_2) because it contains two zeros, which simplifies the calculation. The expansion formula for a 3×33 \times 3 determinant along R2R_2 is: D=a21C21+a22C22+a23C23D = a_{21}C_{21} + a_{22}C_{22} + a_{23}C_{23} where CijC_{ij} is the cofactor of the element aija_{ij}, given by Cij=(1)i+jMijC_{ij} = (-1)^{i+j}M_{ij}, and MijM_{ij} is the minor.

For our determinant: a21=xa_{21} = x, a22=0a_{22} = 0, a23=0a_{23} = 0.

D=x(1)2+111y0+0(1)2+21100+0(1)2+3110yD = x \cdot (-1)^{2+1} \begin{vmatrix}1 & 1 \\ y & 0\end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix}1 & 1 \\ 0 & 0\end{vmatrix} + 0 \cdot (-1)^{2+3} \begin{vmatrix}1 & 1 \\ 0 & y\end{vmatrix}

D=x(1)(101y)+0+0D = x \cdot (-1) (1 \cdot 0 - 1 \cdot y) + 0 + 0 D=x(0y)D = -x (0 - y) D=x(y)D = -x (-y) D=xyD = xy

The value of the determinant is xyxy.