Solveeit Logo

Question

Question: The value of the determinant $\begin{vmatrix} 1 & a & a^3-bc \\ 1 & b & b^3-ac \\ 1 & c & c^3-ab \en...

The value of the determinant 1aa3bc1bb3ac1cc3ab\begin{vmatrix} 1 & a & a^3-bc \\ 1 & b & b^3-ac \\ 1 & c & c^3-ab \end{vmatrix} =

A

a2+b2+c2a^2 + b^2 + c^2

B

a+b+ca+b+c

C

abcabc

D

0

Answer

0

Explanation

Solution

To evaluate the determinant:

D=1aa3bc1bb3ac1cc3abD = \begin{vmatrix} 1 & a & a^3-bc \\ 1 & b & b^3-ac \\ 1 & c & c^3-ab \end{vmatrix}

We can split the third column into two determinants:

D=1aa31bb31cc31abc1bac1cabD = \begin{vmatrix} 1 & a & a^3 \\ 1 & b & b^3 \\ 1 & c & c^3 \end{vmatrix} - \begin{vmatrix} 1 & a & bc \\ 1 & b & ac \\ 1 & c & ab \end{vmatrix}

Let D1=1aa31bb31cc3D_1 = \begin{vmatrix} 1 & a & a^3 \\ 1 & b & b^3 \\ 1 & c & c^3 \end{vmatrix} and D2=1abc1bac1cabD_2 = \begin{vmatrix} 1 & a & bc \\ 1 & b & ac \\ 1 & c & ab \end{vmatrix}.

D1=(ab)(bc)(ca)(a+b+c)D_1 = (a-b)(b-c)(c-a)(a+b+c) and D2=(ab)(bc)(ca)D_2 = (a-b)(b-c)(c-a).

Therefore, D=(ab)(bc)(ca)(a+b+c1)D = (a-b)(b-c)(c-a)(a+b+c-1).

While this is the general solution, it does not match any of the options. However, in the context of multiple-choice questions, it is common that the determinant evaluates to 0 under a specific common condition, or the question implies a condition.

If a+b+c=1a+b+c=1, then the determinant would be 0. Without any further constraints on a,b,ca, b, c, and given the options, it is most likely that the intended answer is 0, possibly implying the condition a+b+c=1a+b+c=1.