Solveeit Logo

Question

Question: The value of the determinant $\begin{vmatrix} 1 & a & a^2-bc \\ 1 & b & b^2-ac \\ 1 & c & c^2-ab \en...

The value of the determinant 1aa2bc1bb2ac1cc2ab\begin{vmatrix} 1 & a & a^2-bc \\ 1 & b & b^2-ac \\ 1 & c & c^2-ab \end{vmatrix}

A

a+b+c

B

a2+b2+c2a^2+b^2+c^2

C

abc

D

0

Answer

0

Explanation

Solution

To find the value of the determinant D=1aa2bc1bb2ac1cc2abD = \begin{vmatrix} 1 & a & a^2-bc \\ 1 & b & b^2-ac \\ 1 & c & c^2-ab \end{vmatrix}, we use properties of determinants.

Step 1: Apply row operations to simplify the determinant. Perform the following row operations:

  1. R2R2R1R_2 \to R_2 - R_1
  2. R3R3R1R_3 \to R_3 - R_1

Let's calculate the new elements for R2R_2:

  • First element: 11=01 - 1 = 0
  • Second element: bab - a
  • Third element: (b2ac)(a2bc)=b2a2ac+bc(b^2 - ac) - (a^2 - bc) = b^2 - a^2 - ac + bc =(ba)(b+a)+c(ba)= (b-a)(b+a) + c(b-a) =(ba)(b+a+c)= (b-a)(b+a+c)

Now, let's calculate the new elements for R3R_3:

  • First element: 11=01 - 1 = 0
  • Second element: cac - a
  • Third element: (c2ab)(a2bc)=c2a2ab+bc(c^2 - ab) - (a^2 - bc) = c^2 - a^2 - ab + bc =(ca)(c+a)+b(ca)= (c-a)(c+a) + b(c-a) =(ca)(c+a+b)= (c-a)(c+a+b)

After these operations, the determinant becomes: D=1aa2bc0ba(ba)(a+b+c)0ca(ca)(a+b+c)D = \begin{vmatrix} 1 & a & a^2-bc \\ 0 & b-a & (b-a)(a+b+c) \\ 0 & c-a & (c-a)(a+b+c) \end{vmatrix}

Step 2: Factor out common terms from rows. We can take out (ba)(b-a) as a common factor from the second row (R2R_2) and (ca)(c-a) as a common factor from the third row (R3R_3).

D=(ba)(ca)1aa2bc01a+b+c01a+b+cD = (b-a)(c-a) \begin{vmatrix} 1 & a & a^2-bc \\ 0 & 1 & a+b+c \\ 0 & 1 & a+b+c \end{vmatrix}

Step 3: Evaluate the simplified determinant. Observe the determinant obtained in Step 2. The second row (R2R_2) and the third row (R3R_3) are identical: R2=[01a+b+c]R_2 = [0 \quad 1 \quad a+b+c] R3=[01a+b+c]R_3 = [0 \quad 1 \quad a+b+c]

A property of determinants states that if any two rows (or columns) of a determinant are identical, the value of the determinant is zero.

Therefore, the determinant 1aa2bc01a+b+c01a+b+c\begin{vmatrix} 1 & a & a^2-bc \\ 0 & 1 & a+b+c \\ 0 & 1 & a+b+c \end{vmatrix} is equal to 0.

So, D=(ba)(ca)×0=0D = (b-a)(c-a) \times 0 = 0.

The final answer is 0\boxed{0}.