Solveeit Logo

Question

Mathematics Question on Properties of Determinants

The value of the determinant sin236cos236cot135 sin253cot135cos253 cot135cos225cos265\begin{vmatrix}\sin ^{2} 36^{\circ} & \cos ^{2} 36^{\circ} & \cot 135^{\circ} \\\ \sin ^{2} 53^{\circ} & \cot 135^{\circ} & \cos ^{2} 53^{\circ} \\\ \cot 135^{\circ} & \cos ^{2} 25^{\circ} & \cos ^{2} 65^{\circ}\end{vmatrix} is

A

-2

B

-1

C

0

D

1

Answer

0

Explanation

Solution

Δ=sin236cos236cot135 sin253cot135cos253 cot135cos225cos265\Delta=\begin{vmatrix}\sin ^{2} 36^{\circ} & \cos ^{2} 36^{\circ} & \cot 135^{\circ} \\\ \sin ^{2} 53^{\circ} & \cot 135^{\circ} & \cos ^{2} 53^{\circ} \\\ \cot 135^{\circ} & \cos ^{2} 25^{\circ} & \cos ^{2} 65^{\circ}\end{vmatrix}
cos236=cos2(9054)=sin254\therefore \cos ^{2} 36^{\circ}=\cos ^{2}(90-54)=\sin ^{2} 54^{\circ}
sin237=sin2(9053)=cos253\sin ^{2} 37^{\circ}=\sin ^{2}(90-53)^{\circ}=\cos ^{2} 53^{\circ}
cos265=cos2(9025)=sin225\cos ^{2} 65^{\circ}=\cos ^{2}(90-25)^{\circ}=\sin ^{2} 25^{\circ}
cot135=cot(90+45)=tan45=1\cot 135^{\circ}=\cot (90+45)^{\circ}=-\tan 45^{\circ}=-1
Δ=cos254sin2541 sin2531cos253 1cos225sin225\therefore \Delta=\begin{vmatrix}\cos ^{2} 54^{\circ} & \sin ^{2} 54^{\circ} & -1 \\\ \sin ^{2} 53 & -1 & \cos ^{2} 53^{\circ} \\\ -1 & \cos ^{2} 25^{\circ} & \sin ^{2} 25^{\circ}\end{vmatrix}
Δ=cos254+sin2541sin2541 sin2531+cos2531cos253 1+cos225+sin225cos225sin225\Delta=\begin{vmatrix}\cos ^{2} 54^{\circ}+\sin ^{2} 54^{\circ}-1 \sin ^{2} 54^{\circ} -1\\\ \sin ^{2} 53^{\circ}-1+\cos ^{2} 53^{\circ}-1 cos^{2} 53^{\circ} \\\ -1+\cos ^{2} 25^{\circ}+\sin ^{2} 25^{\circ} \cos ^{2} 25^{\circ} \sin ^{2} 25^{\circ} \end{vmatrix}
=0sin2541 01cos253 0cos225sin225=0=\begin{vmatrix}0 & \sin ^{2} 54^{\circ} & -1 \\\ 0 & -1 & \cos ^{2} 53^{\circ} \\\ 0 & \cos ^{2} 25^{\circ} & \sin ^{2} 25^{\circ}\end{vmatrix}=0