Solveeit Logo

Question

Mathematics Question on Determinants

The value of the determinant cosαsinα1 sinαcosα1 cos(α+β)sinα+β1\begin{vmatrix}\cos\alpha&-\sin\alpha&1\\\ \sin \alpha&\cos\alpha&1\\\ \cos\left(\alpha+\beta\right)&-\sin\alpha+\beta&1\end{vmatrix} is

A

independent of α\alpha

B

independent of β\beta

C

independent of α\alpha and β\beta

D

None of the above

Answer

independent of α\alpha

Explanation

Solution

Given, cosαsinα1 sinαcosα1 cos(α+β)sinα+β1\begin{vmatrix}\cos\alpha&-\sin\alpha&1\\\ \sin \alpha&\cos\alpha&1\\\ \cos\left(\alpha+\beta\right)&-\sin\alpha+\beta&1\end{vmatrix}
[Applying R3R3R1(cosβ)+R2(sinβ)]R_{3} \to R_{3} - R_{1}\left(\cos\beta\right) +R_{2}\left(\sin\beta\right) ]
=(cosαsinα1 sinαcosα1 001+sinβcosβ)= \begin{pmatrix}\cos\alpha&-\sin\alpha&1\\\ \sin\alpha&\cos\alpha&1\\\ 0&0&1+\sin\beta-\cos\beta\end{pmatrix}
=(1+sinβcosβ)(cos2α+sin2α)= \left(1+\sin\beta -\cos\beta\right)\left(\cos^{2} \alpha + \sin^{2} \alpha\right)
=1+sinβcosβ= 1+\sin\beta-\cos\beta which is independent of α\alpha