Question
Mathematics Question on Applications of Determinants and Matrices
The value of the determinant b2−ab ab−a2 bc−acb−ca−bc−abc−acb2−abab−a2 is
A
a b c
B
a+b+c
C
0
D
a b+b c+c a
Answer
0
Explanation
Solution
.Let Δ=b2−ab ab−a2 bc−acb−ca−bc−abc−acb2−abab−a2
=b(b−a) a(b−a) c(b−a)b−ca−bc−ac(b−a)b(b−a)a(b−a)
Taking common (b−a) from C1 and C3, respectively
=(b−a)(b−a)b a cb−ca−bc−acba
=(b−a)2b a c000cba
[using C2→C2−(C1−C3)]
=0