Solveeit Logo

Question

Mathematics Question on Applications of Determinants and Matrices

The value of the determinant b2abbcbcac aba2abb2ab bcaccaaba2\begin{vmatrix}b^{2}-a b & b-c & b c-a c \\\ a b-a^{2} & a-b & b^{2}-a b \\\ b c-a c & c-a & a b-a^{2}\end{vmatrix} is

A

a b c

B

a+b+c

C

0

D

a b+b c+c a

Answer

0

Explanation

Solution

.Let Δ=b2abbcbcac aba2abb2ab bcaccaaba2\Delta =\begin{vmatrix} b^{2}-a b & b-c & b c-a c \\\ a b-a^{2} & a-b & b^{2}-a b \\\ b c-a c & c-a & a b-a^{2} \end{vmatrix}
=b(ba)bcc(ba) a(ba)abb(ba) c(ba)caa(ba)=\begin{vmatrix} b(b-a) & b-c & c(b-a) \\\ a(b-a) & a-b & b(b-a) \\\ c(b-a) & c-a & a(b-a) \end{vmatrix}
Taking common (ba)(b-a) from C1C_{1} and C3C_{3}, respectively
=(ba)(ba)bbcc aabb ccaa=(b-a)(b-a)\begin{vmatrix} b & b-c & c \\\ a & a-b & b \\\ c & c-a & a \end{vmatrix}
=(ba)2b0c a0b c0a=(b-a)^{2}\begin{vmatrix} b & 0 & c \\\ a & 0 & b \\\ c & 0 & a \end{vmatrix}
[using C2C2(C1C3C_{2} \rightarrow C_{2}-(C_{1}-C_{3})]
=0= 0