Solveeit Logo

Question

Mathematics Question on Determinants

The value of the determinant 1cos;(αβ)cos;α cos(αβ)1cos;β cosαcos;β1\begin{vmatrix}1&cos; \left(\alpha-\beta\right)&cos; \alpha\\\ cos \left(\alpha -\beta \right)&1&cos; \beta\\\ cos \alpha &cos; \beta &1\end{vmatrix} is

A

α2+β2\alpha^{2}+\beta^{2}

B

α2β2\alpha^{2}-\beta^{2}

C

11

D

00

Answer

00

Explanation

Solution

On solving the determinant,
1(1cos2β)cos(αβ)[cos(αβ)cosαcosβ]1\left(1-\cos ^{2} \beta\right)-\cos (\alpha-\beta)[\cos (\alpha-\beta)-\cos \alpha \cdot \cos \beta]
+cosα[cosβcos(αβ)cosα]+\cos \alpha[\cos \beta \cdot \cos (\alpha-\beta)-\cos \alpha]
=1cos2βcos2αcos2(αβ)= 1-\cos ^{2} \beta-\cos ^{2} \alpha-\cos ^{2}(\alpha-\beta)
+2cosαcosβcos(αβ)+2 \cos \alpha \cdot \cos \beta \cdot \cos (\alpha-\beta)
=1cos2βcos2α+cos(αβ)= 1-\cos ^{2} \beta-\cos ^{2} \alpha+\cos (\alpha-\beta)
[2cosαcosβcos(αβ)][2 \cos \alpha \cdot \cos \beta-\cos (\alpha-\beta)]
=1cos2βcos2α+cos(αβ)= 1-\cos ^{2} \beta-\cos ^{2} \alpha+\cos (\alpha-\beta)
[cos(α+β)+cos(αβ)cos(αβ)][\cos (\alpha+\beta)+\cos (\alpha-\beta)-\cos (\alpha-\beta)]
=1cos2βcos2α+cos(αβ)cos(α+β)= 1-\cos ^{2} \beta-\cos ^{2} \alpha+\cos (\alpha-\beta) \cos (\alpha+\beta)
=1cos2βcos2α+cos2αcos2βsin2αsin2β= 1-\cos ^{2} \beta-\cos ^{2} \alpha+\cos ^{2} \alpha \cdot \cos ^{2} \beta-\sin ^{2} \alpha \cdot \sin ^{2} \beta
=1cos2βcos2α(1cos2β)sin2αsin2β= 1-\cos ^{2} \beta-\cos ^{2} \alpha\left(1-\cos ^{2} \beta\right)-\sin ^{2} \alpha \cdot \sin ^{2} \beta
=1cos2βcos2αsin2βsin2αsin2β= 1-\cos ^{2} \beta-\cos ^{2} \alpha \cdot \sin ^{2} \beta-\sin ^{2} \alpha \cdot \sin ^{2} \beta
=(1cos2β)sin2β(sin2α+cos2α)=\left(1-\cos ^{2} \beta\right)-\sin ^{2} \beta\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)
=sin2βsin2β1= \sin ^{2} \beta-\sin ^{2} \beta \cdot 1
=0= 0