Question
Mathematics Question on Determinants
The value of the determinant 1 cos(α−β) cosαcos;(α−β)1cos;βcos;αcos;β1 is
A
α2+β2
B
α2−β2
C
1
D
0
Answer
0
Explanation
Solution
On solving the determinant,
1(1−cos2β)−cos(α−β)[cos(α−β)−cosα⋅cosβ]
+cosα[cosβ⋅cos(α−β)−cosα]
=1−cos2β−cos2α−cos2(α−β)
+2cosα⋅cosβ⋅cos(α−β)
=1−cos2β−cos2α+cos(α−β)
[2cosα⋅cosβ−cos(α−β)]
=1−cos2β−cos2α+cos(α−β)
[cos(α+β)+cos(α−β)−cos(α−β)]
=1−cos2β−cos2α+cos(α−β)cos(α+β)
=1−cos2β−cos2α+cos2α⋅cos2β−sin2α⋅sin2β
=1−cos2β−cos2α(1−cos2β)−sin2α⋅sin2β
=1−cos2β−cos2α⋅sin2β−sin2α⋅sin2β
=(1−cos2β)−sin2β(sin2α+cos2α)
=sin2β−sin2β⋅1
=0