Question
Question: The value of the definite integral \(\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x}{\sin x...
The value of the definite integral 0∫2πsinx+cosxsin3xdx is?
A. 4π−2
B. 8π−2
C. 4π−1
D. 2π−1
Solution
To solve this integral, we should apply a property of the definite integrals. The property is a∫bf(x)dx=a∫bf(a+b−x)dx. Using this property in the integral, we get I=0∫2πsinx+cosxsin3xdx=0∫2πsin(2π−x)+cos(2π−x)sin3(2π−x)dx=0∫2πsinx+cosxcos3xdx. By adding the two integrals 0∫2πsinx+cosxsin3xdx and 0∫2πsinx+cosxcos3xdx , we get 2I=0∫2πsinx+cosxsin3x+cos3xdx. By using the formula a3+b3=(a+b)(a2+b2−ab), we can solve the integral.
**
Complete step-by-step answer:**
We are given the integral I=0∫2πsinx+cosxsin3xdx.
We know a formula in integration a∫bf(x)dx=a∫bf(a+b−x)dx.
Here in the question a=0,b=2π, f(x)=sinx+cosxsin3x
By applying the formula, we get
I=0∫2πsinx+cosxsin3xdx=0∫2πsin(2π−x)+cos(2π−x)sin3(2π−x)dx=0∫2πsinx+cosxcos3xdx
We got the two expressions for the integral I as
I=0∫2πsinx+cosxsin3xdx→(1)
I=0∫2πsinx+cosxcos3xdx→(2)
By adding equations 1 and 2, we get
2I=0∫2πsinx+cosxsin3xdx+0∫2πsinx+cosxcos3xdx
As the limits of the two definite integrals are same, we can write the two integrals as a single integral
a∫bf(x)dx+a∫bg(x)dx=a∫b(f(x)+g(x))dx
Using this property, we get
2I=0∫2π(sinx+cosxsin3x+sinx+cosxcos3x)dx
2I=0∫2πsinx+cosxsin3x+cos3xdx
We know the formula a3+b3=(a+b)(a2+b2−ab)
By taking a=sinx,b=cosx, we can write the numerator in the integral as
2I=0∫2πsinx+cosx(sinx+cosx)(sin2x+cos2x−sinxcosx)dx
By cancelling sinx+cosx, we get
2I=0∫2π(sin2x+cos2x−sinxcosx)dx
We know the formula sin2x+cos2x=1, we get
2I=0∫2π(1−sinx×cosx)dx
We know that
sin2x=2sinx×cosx
2sin2x=sinx×cosx
The integral can be written as
2I=0∫2π(1−2sin2x)dx
We know the integration formula ∫sinnxdx=n−cosnx
By integrating the function inside the integral, we get
2I=0∫2π(1−2sin2x)dx=[x−(−2×2cos2x)]02π=[x+4cos2x]02π
By applying the limits, we get
2I=2π+4cos2×2π−(0+4cos2×0)=2π+4−1−41=2π−21=2π−1
Dividing by 2, we get
I=4π−1
∴ The value of the integral I=0∫2πsinx+cosxsin3xdx=4π−1.
Hence, the correct answer is option (C).
Note : Students might commit mistakes by forgetting the value of 2 in 2I and get an answer as I=2π−1. There is option-D which contains the wrong option. Students, without dividing by 2, opt for the option-D. To avoid this mistake, it is always a good practice to write both L.H.S and R.H.S in every step even while doing the rough work. This method of writing eliminates the error.