Solveeit Logo

Question

Question: The value of the definite integral \(\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x}{\sin x...

The value of the definite integral 0π2sin3xsinx+cosxdx\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x}{\sin x+\cos x}}dx is?

A. π24\dfrac{\pi -2}{4}

B. π28\dfrac{\pi -2}{8}

C. π14\dfrac{\pi -1}{4}

D. π12\dfrac{\pi -1}{2}

Explanation

Solution

To solve this integral, we should apply a property of the definite integrals. The property is abf(x)dx=abf(a+bx)dx\int\limits_{a}^{b}{f\left( x \right)dx=\int\limits_{a}^{b}{f\left( a+b-x \right)}}dx. Using this property in the integral, we get I=0π2sin3xsinx+cosxdx=0π2sin3(π2x)sin(π2x)+cos(π2x)dx=0π2cos3xsinx+cosxdxI=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x}{\sin x+\cos x}}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}\left( \dfrac{\pi }{2}-x \right)}{\sin \left( \dfrac{\pi }{2}-x \right)+\cos \left( \dfrac{\pi }{2}-x \right)}}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{3}}x}{\sin x+\cos x}}dx. By adding the two integrals 0π2sin3xsinx+cosxdx\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x}{\sin x+\cos x}}dx and 0π2cos3xsinx+cosxdx\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{3}}x}{\sin x+\cos x}}dx , we get 2I=0π2sin3x+cos3xsinx+cosxdx2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x+{{\cos }^{3}}x}{\sin x+\cos x}}dx. By using the formula a3+b3=(a+b)(a2+b2ab){{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right), we can solve the integral.

**
Complete step-by-step answer:**

We are given the integral I=0π2sin3xsinx+cosxdxI=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x}{\sin x+\cos x}}dx.

We know a formula in integration abf(x)dx=abf(a+bx)dx\int\limits_{a}^{b}{f\left( x \right)dx=\int\limits_{a}^{b}{f\left( a+b-x \right)}}dx.

Here in the question a=0,b=π2a=0,b=\dfrac{\pi }{2}, f(x)=sin3xsinx+cosxf\left( x \right)=\dfrac{{{\sin }^{3}}x}{\sin x+\cos x}

By applying the formula, we get

I=0π2sin3xsinx+cosxdx=0π2sin3(π2x)sin(π2x)+cos(π2x)dx=0π2cos3xsinx+cosxdxI=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x}{\sin x+\cos x}}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}\left( \dfrac{\pi }{2}-x \right)}{\sin \left( \dfrac{\pi }{2}-x \right)+\cos \left( \dfrac{\pi }{2}-x \right)}}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{3}}x}{\sin x+\cos x}}dx

We got the two expressions for the integral I as

I=0π2sin3xsinx+cosxdx(1)I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x}{\sin x+\cos x}}dx\to \left( 1 \right)

I=0π2cos3xsinx+cosxdx(2)I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{3}}x}{\sin x+\cos x}}dx\to \left( 2 \right)

By adding equations 1 and 2, we get

2I=0π2sin3xsinx+cosxdx+0π2cos3xsinx+cosxdx2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x}{\sin x+\cos x}}dx+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{3}}x}{\sin x+\cos x}}dx

As the limits of the two definite integrals are same, we can write the two integrals as a single integral

abf(x)dx+abg(x)dx=ab(f(x)+g(x))dx\int\limits_{a}^{b}{f\left( x \right)dx+}\int\limits_{a}^{b}{g\left( x \right)dx=\int\limits_{a}^{b}{\left( f\left( x \right)+g\left( x \right) \right)}}dx

Using this property, we get

2I=0π2(sin3xsinx+cosx+cos3xsinx+cosx)dx2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{{{\sin }^{3}}x}{\sin x+\cos x}+\dfrac{{{\cos }^{3}}x}{\sin x+\cos x} \right)}dx

2I=0π2sin3x+cos3xsinx+cosxdx2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x+{{\cos }^{3}}x}{\sin x+\cos x}dx}

We know the formula a3+b3=(a+b)(a2+b2ab){{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)

By taking a=sinx,b=cosxa=\sin x,b=\cos x, we can write the numerator in the integral as

2I=0π2(sinx+cosx)(sin2x+cos2xsinxcosx)sinx+cosxdx2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\left( \sin x+\cos x \right)\left( {{\sin }^{2}}x+{{\cos }^{2}}x-\sin x\cos x \right)}{\sin x+\cos x}dx}

By cancelling sinx+cosx\sin x+\cos x, we get

2I=0π2(sin2x+cos2xsinxcosx)dx2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\sin }^{2}}x+{{\cos }^{2}}x-\sin x\cos x \right)dx}

We know the formula sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1, we get

2I=0π2(1sinx×cosx)dx2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 1-\sin x\times \cos x \right)dx}

We know that

sin2x=2sinx×cosx\sin 2x=2\sin x\times \cos x

sin2x2=sinx×cosx\dfrac{\sin 2x}{2}=\sin x\times \cos x

The integral can be written as

2I=0π2(1sin2x2)dx2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 1-\dfrac{\sin 2x}{2} \right)dx}

We know the integration formula sinnxdx=cosnxn\int{\sin nxdx=\dfrac{-\cos nx}{n}}

By integrating the function inside the integral, we get

2I=0π2(1sin2x2)dx=[x(cos2x2×2)]0π2=[x+cos2x4]0π22I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 1-\dfrac{\sin 2x}{2} \right)dx}=\left[ x-\left( -\dfrac{\cos 2x}{2\times 2} \right) \right]_{0}^{\dfrac{\pi }{2}}=\left[ x+\dfrac{\cos 2x}{4} \right]_{0}^{\dfrac{\pi }{2}}

By applying the limits, we get

2I=(π2+cos2×π24)(0+cos2×04)=π2+1414=π212=π122I=\left( \dfrac{\pi }{2}+\dfrac{\cos 2\times \dfrac{\pi }{2}}{4} \right)-\left( 0+\dfrac{\cos 2\times 0}{4} \right)=\dfrac{\pi }{2}+\dfrac{-1}{4}-\dfrac{1}{4}=\dfrac{\pi }{2}-\dfrac{1}{2}=\dfrac{\pi -1}{2}

Dividing by 2, we get

I=π14I=\dfrac{\pi -1}{4}

\therefore The value of the integral I=0π2sin3xsinx+cosxdx=π14I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{3}}x}{\sin x+\cos x}}dx=\dfrac{\pi -1}{4}.

Hence, the correct answer is option (C).

Note : Students might commit mistakes by forgetting the value of 2 in 2I2I and get an answer as I=π12I=\dfrac{\pi -1}{2}. There is option-D which contains the wrong option. Students, without dividing by 2, opt for the option-D. To avoid this mistake, it is always a good practice to write both L.H.S and R.H.S in every step even while doing the rough work. This method of writing eliminates the error.