Solveeit Logo

Question

Mathematics Question on Definite Integral

The value of the definite integral 01xdxx3+16\int\limits_{0}^{1}\frac{x\,dx}{x^3+16} lies in the interval [a, h], The smallest such interval is

A

[0,117]\left[0,\frac{1}{17}\right]

B

[0,1][0,1]

C

[0,127]\left[0,\frac{1}{27}\right]

D

none of these,

Answer

[0,117]\left[0,\frac{1}{17}\right]

Explanation

Solution

f(x)=xx3+16f(x)f \left(x\right)=\frac{x}{x^{3}+16} \Rightarrow f'\left(x\right) =(x3+16)1x3x2(x3+16)2=\frac{\left(x^{3}+16\right)\cdot1-x\cdot3x^{2}}{\left(x^{3}+16\right)^{2}} =x33x3+16(x3+16)2=162x3(x3+16)2=\frac{x^{3}-3x^{3}+16}{\left(x^{3}+16\right)^{2}}=\frac{16-2x^{3}}{\left(x^{3}+16\right)^{2}} >0>\, 0 for all x[0,1]x \in\left[0,1\right] f(x)\therefore f \left(x\right) is monotonic increasing function. Least value =0= 0, greatest value =117=\frac{1}{17} in [0,1]\left[0,1\right] Since m(ba)abf(x)M(ba)m\left(b- a\right) \le \int\limits_{a}^{b} f \left(x\right) \le M \left(b-a\right) 0(10)01xdxx3+10117(10)\therefore 0\left(1-0\right)\le\int_{0}^{1} \frac{x\,dx}{x^{3}+10}\frac{1}{17} \le\left(1-0\right) 001xdxx3+16117\Rightarrow 0 \le\int_{0}^{1}\frac{x\,dx}{x^{3}+16}\le\,\frac{1}{17}