Question
Question: The value of the definite integral \(\int _ { 0 } ^ { 1 } \frac { d x } { x ^ { 2 } + 2 x \cos \alp...
The value of the definite integral ∫01x2+2xcosα+1dx for 0<α<π is equal to
A
sinα
B
tan−1(sinα)
C
αsinα
D
2α(sinα)−1
Answer
2α(sinα)−1
Explanation
Solution
∫01x2+2xcosα+1dx=∫01(x+cosα)2+1−cos2αdx
=∫01(x+cosα)2+sin2αdx=[sinα1tan−1sinαx+cosα]01
=sinα1(tan−1cot2α−tan−1cotα)=2α⋅sinα1 .