Question
Mathematics Question on Definite Integral
The value of the definite integral ∫01(1+e−x2)dxis
A
1
B
2
C
1+e−1
D
None of these
Answer
None of these
Explanation
Solution
If f(x) is a continuous function defined on [a, b], then
m(b−a)≤ ∫abf(x)dx≤ M(b−a)
where, M and m are maximum and minimum values
respectively of f(x) in [a, b].
Here, f(x) = 1 + e−x2 is continuous in [0,1],
Now, 0<x<1 ⇒ x2<x ⇒ ex2<ex e−x2>e−x
Again, 0 < x < 1⇒ x2>0 ⇒ ex2>e0 ⇒ e−x3<1
∴ e−x<e−x2<1,∀ x∈ [0,1]
⇒ 1+e−x<1+e−x2<2,∀x∈[0,1]
$\Rightarrow \ \ \ \ \int_0^1(1+e^{-x}) dx < \int_0^1(1+e^{-x^2}) dx