Solveeit Logo

Question

Question: The value of \[{\tanh ^{ - 1}}\left( {\dfrac{1}{2}} \right) + {\coth ^{ - 1}}\left( 2 \right) = \] ...

The value of tanh1(12)+coth1(2)={\tanh ^{ - 1}}\left( {\dfrac{1}{2}} \right) + {\coth ^{ - 1}}\left( 2 \right) =
A.12log3\dfrac{1}{2}\log 3
B. 12log6\dfrac{1}{2}\log 6
C. 12log12\dfrac{1}{2}\log 12
D. log3\log 3

Explanation

Solution

We use the formula of inverse hyperbolic functions tanh1(x){\tanh ^{ - 1}}(x) and coth1(x){\coth ^{ - 1}}(x) to calculate both the values separately using substitution of given angles. Add the obtained values and calculate the total value of the equation.

  • Hyperbolic trigonometric functions are functions that express an angle as a relationship between distances from a point on hyperbola to the origin and to the coordinate axis, as hyperbolic sine and hyperbolic cosine.
  • tanh1(x)=12log(1+x1x){\tanh ^{ - 1}}(x) = \dfrac{1}{2}\log \left( {\dfrac{{1 + x}}{{1 - x}}} \right) and coth1(x)=12log(x+1x1){\coth ^{ - 1}}(x) = \dfrac{1}{2}\log \left( {\dfrac{{x + 1}}{{x - 1}}} \right)

Step-By-Step answer:
We are given three points (2,3,4),(1,2,3)(2,3, - 4),(1, - 2,3) and (3,8,11)(3,8, - 11)
Let points be named as A(2,3,4),B(1,2,3)A(2,3, - 4),B(1, - 2,3) and C(3,8,11)C(3,8, - 11)
We calculate the distance or length of sides using distance point formula
Side AB:
AB is made by joining coordinates A(2,3,4),B(1,2,3)A(2,3, - 4),B(1, - 2,3)
AB=(12)2+(23)2+(3(4))2\Rightarrow AB = \sqrt {{{\left( {1 - 2} \right)}^2} + {{\left( { - 2 - 3} \right)}^2} + {{\left( {3 - ( - 4)} \right)}^2}}
Use the fact that negative sign multiplied with negative sign gives us a positive sign
AB=(1)2+(5)2+(3+4)2\Rightarrow AB = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 5} \right)}^2} + {{\left( {3 + 4} \right)}^2}}
AB=(1)2+(5)2+(7)2\Rightarrow AB = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 5} \right)}^2} + {{\left( 7 \right)}^2}}
Square the numbers under the root
AB=1+25+49\Rightarrow AB = \sqrt {1 + 25 + 49}
AB=75\Rightarrow AB = \sqrt {75}
AB=25×3\Rightarrow AB = \sqrt {25 \times 3}
We can write terms under the square root as square of a whole number
AB=52×3\Rightarrow AB = \sqrt {{5^2} \times 3}
Cancel square root by square power
AB=53\Rightarrow AB = 5\sqrt 3 … (1)
Side BC:
BC is made by joining coordinates B(1,2,3),C(3,8,11)B(1, - 2,3),C(3,8, - 11)
BC=(31)2+(8(2))2+(113)2\Rightarrow BC = \sqrt {{{\left( {3 - 1} \right)}^2} + {{\left( {8 - ( - 2)} \right)}^2} + {{\left( { - 11 - 3} \right)}^2}}
Use the fact that negative sign multiplied with negative sign gives us a positive sign
BC=(2)2+(8+2)2+(14)2\Rightarrow BC = \sqrt {{{\left( 2 \right)}^2} + {{\left( {8 + 2} \right)}^2} + {{\left( { - 14} \right)}^2}}
BC=(2)2+(10)2+(14)2\Rightarrow BC = \sqrt {{{\left( 2 \right)}^2} + {{\left( {10} \right)}^2} + {{\left( { - 14} \right)}^2}}
Square the numbers under the root
BC=4+100+196\Rightarrow BC = \sqrt {4 + 100 + 196}
BC=300\Rightarrow BC = \sqrt {300}
BC=100×3\Rightarrow BC = \sqrt {100 \times 3}
We can write terms under the square root as square of a whole number
BC=102×3\Rightarrow BC = \sqrt {{{10}^2} \times 3}
Cancel square root by square power
BC=103\Rightarrow BC = 10\sqrt 3 … (2)
Side CA:
AB is made by joining coordinates C(3,8,11),A(2,3,4)C(3,8, - 11),A(2,3, - 4)
CA=(23)2+(38)2+(4(11))2\Rightarrow CA = \sqrt {{{\left( {2 - 3} \right)}^2} + {{\left( {3 - 8} \right)}^2} + {{\left( { - 4 - ( - 11)} \right)}^2}}
Use the fact that negative sign multiplied with negative sign gives us a positive sign
CA=(1)2+(5)2+(4+11)2\Rightarrow CA = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 5} \right)}^2} + {{\left( { - 4 + 11} \right)}^2}}
CA=(1)2+(5)2+(7)2\Rightarrow CA = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 5} \right)}^2} + {{\left( 7 \right)}^2}}
Square the numbers under the root
CA=1+25+49\Rightarrow CA = \sqrt {1 + 25 + 49}
CA=75\Rightarrow CA = \sqrt {75}
CA=25×3\Rightarrow CA = \sqrt {25 \times 3}
We can write terms under the square root as square of a whole number
CA=52×3\Rightarrow CA = \sqrt {{5^2} \times 3}
Cancel square root by square power
CA=53\Rightarrow CA = 5\sqrt 3 … (3)
Length of sides of a triangle is 53;103;535\sqrt 3 ;10\sqrt 3 ;5\sqrt 3
Let a=53,b=103,c=53a = 5\sqrt 3 ,b = 10\sqrt 3 ,c = 5\sqrt 3
We find the semi-perimeter of the triangle;
s=12(a+b+c)\Rightarrow s = \dfrac{1}{2}(a + b + c)
Substitute the values of ‘a’, ‘b’ and ‘c’
s=12(53+103+53)\Rightarrow s = \dfrac{1}{2}(5\sqrt 3 + 10\sqrt 3 + 5\sqrt 3 )
Take 3\sqrt 3 common and add the terms
s=12(3(5+10+5))\Rightarrow s = \dfrac{1}{2}(\sqrt 3 (5 + 10 + 5))
s=12×203\Rightarrow s = \dfrac{1}{2} \times 20\sqrt 3
Cancel same factors from numerator and denominator
s=103\Rightarrow s = 10\sqrt 3 … (4)
Then using Heron's formula to find the area of a triangle
\Rightarrow Area of triangle =s(sa)(sb)(sc)= \sqrt {s(s - a)(s - b)(s - c)}
Substitute the value of ‘a’, ‘b’, ’c’ and ‘S’ in the formula
\Rightarrow Area of triangle =103(10353)(103103)(10353)= \sqrt {10\sqrt 3 (10\sqrt 3 - 5\sqrt 3 )(10\sqrt 3 - 10\sqrt 3 )(10\sqrt 3 - 5\sqrt 3 )}
\Rightarrow Area of triangle =103(53)(0)(53)= \sqrt {10\sqrt 3 (5\sqrt 3 )(0)(5\sqrt 3 )}
\Rightarrow Area of triangle =0= \sqrt 0
\Rightarrow Area of triangle =0 = 0
\therefore Area of triangle formed by three points is equal to 0.
\therefore Points (2,3,4),(1,2,3)(2,3, - 4),(1, - 2,3) and (3,8,11)(3,8, - 11) are collinear.We have to calculate the value of tanh1(12)+coth1(2){\tanh ^{ - 1}}\left( {\dfrac{1}{2}} \right) + {\coth ^{ - 1}}\left( 2 \right) … (1)
We find the value of each term separately and then add to find the total value.
We know that tanh1(x)=12log(1+x1x){\tanh ^{ - 1}}(x) = \dfrac{1}{2}\log \left( {\dfrac{{1 + x}}{{1 - x}}} \right)
Substitute the angle as 12\dfrac{1}{2}
tanh1(12)=12log(1+12112)\Rightarrow {\tanh ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{1}{2}\log \left( {\dfrac{{1 + \dfrac{1}{2}}}{{1 - \dfrac{1}{2}}}} \right)
Take LCM in both numerator and denominator of the fraction
tanh1(12)=12log(2+12212)\Rightarrow {\tanh ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{1}{2}\log \left( {\dfrac{{\dfrac{{2 + 1}}{2}}}{{\dfrac{{2 - 1}}{2}}}} \right)
tanh1(12)=12log(3212)\Rightarrow {\tanh ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{1}{2}\log \left( {\dfrac{{\dfrac{3}{2}}}{{\dfrac{1}{2}}}} \right)
Write fraction in simpler form
tanh1(12)=12log(32×21)\Rightarrow {\tanh ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{1}{2}\log \left( {\dfrac{3}{2} \times \dfrac{2}{1}} \right)
Cancel same factors from numerator and denominator of the fraction inside the angle
tanh1(12)=12log(3)\Rightarrow {\tanh ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{1}{2}\log \left( 3 \right) … (2)
Now we know coth1(x)=12log(x+1x1){\coth ^{ - 1}}(x) = \dfrac{1}{2}\log \left( {\dfrac{{x + 1}}{{x - 1}}} \right)
Substitute the angle as 2
coth1(2)=12log(2+121)\Rightarrow {\coth ^{ - 1}}(2) = \dfrac{1}{2}\log \left( {\dfrac{{2 + 1}}{{2 - 1}}} \right)
Calculate numerator and denominator of fraction
coth1(2)=12log(31)\Rightarrow {\coth ^{ - 1}}(2) = \dfrac{1}{2}\log \left( {\dfrac{3}{1}} \right)
Divide numerator of fraction by denominator
coth1(2)=12log(3)\Rightarrow {\coth ^{ - 1}}(2) = \dfrac{1}{2}\log \left( 3 \right) … (3)
Substitute the values from equations (2) and (3) in equation (1)
tanh1(12)+coth1(2)=12log(3)+12log(3)\Rightarrow {\tanh ^{ - 1}}\left( {\dfrac{1}{2}} \right) + {\coth ^{ - 1}}\left( 2 \right) = \dfrac{1}{2}\log \left( 3 \right) + \dfrac{1}{2}\log \left( 3 \right)
Add the terms in RHS
tanh1(12)+coth1(2)=2×12log(3)\Rightarrow {\tanh ^{ - 1}}\left( {\dfrac{1}{2}} \right) + {\coth ^{ - 1}}\left( 2 \right) = 2 \times \dfrac{1}{2}\log \left( 3 \right)
Calculate numerator and denominator of fraction
tanh1(12)+coth1(2)=log(3)\Rightarrow {\tanh ^{ - 1}}\left( {\dfrac{1}{2}} \right) + {\coth ^{ - 1}}\left( 2 \right) = \log \left( 3 \right)
\therefore Value of tanh1(12)+coth1(2){\tanh ^{ - 1}}\left( {\dfrac{1}{2}} \right) + {\coth ^{ - 1}}\left( 2 \right)is log(3)\log \left( 3 \right)

\therefore Option D is correct.

Note: Many students make the mistake of ignoring the hyperbolic sign or get mistaken that the inverse values might be the same as normal trigonometric functions. They solve for the value by ignoring hyperbolic sine and end up with the wrong answer. Also, keep in mind when substituting the angle given, don’t substitute angle in place of complete fraction, and only substitute the value of ‘x’ where ‘x’ is present in the formula.