Question
Question: The value of \[\tan \left( {{{\tan }^{ - 1}}\dfrac{{1 - {x^2}}}{{2x}} + {{\cos }^{ - 1}}\dfrac{{1 - ...
The value of tan(tan−12x1−x2+cos−11+x21−x2)
A) 1
B) Not defined
C) 3
D) 31
Solution
Here we will first convert cos−11+x21−x2 into the terms of tan−1θ and then use the formula of tan−1A+tan−1B to get the desired solution.
Formula used:
tan−1A+tan−1B=tan−1(1−ABA+B)
tan(tan−1x)=x
Complete step-by-step answer:
The given expression is: -
tan(tan−12x1−x2+cos−11+x21−x2)
We will first convert cos−11+x21−x2 into the terms of tan−1θ
We know that:
cos−11+x21−x2=2tan−1x
Also,
2tan−1x=tan−11−x22x
Hence,
cos−11+x21−x2=tan−11−x22x
Therefore, the expression becomes:
tan(tan−12x1−x2+tan−11−x22x)
Now applying the following formula:
tan−1A+tan−1B=tan−1(1−ABA+B)
We get:-
=tantan−11−(2x1−x2)(1−x22x)2x1−x2+1−x22x
Simplifying it further we get:-
=tantan−11−12x1−x2+1−x22x
Taking the LCM and solving it further we get:-
=tan(tan−10[(2x)(1−x2)](1−x2)(1−x2)+2x(2x))
Simplifying it further we get:-
=tan(tan−10(1−x2)(1−x2)+2x(2x))
Now we know that:
tan(tan−1x)=x
Hence applying this formula we get:-
=0(1−x2)(1−x2)+2x(2x)
Now we know that:
Anything which is divided by 0 is not defined
Hence, we get:-
tan(tan−12x1−x2+tan−11−x22x)=not defined
This implies,
tan(tan−12x1−x2+cos−11+x21−x2)=not defined
Therefore, option B is the correct option.
Note: Students can also convert cos−11+x21−x2 into the terms of tan−1θ using the following formula:-
cos−1x=tan−1(x1−x2)
Therefore,
cos−11+x21−x2=tan−11+x21−x21−(1+x21−x2)2
Solving it further we get:-
cos−11+x21−x2=tan−11+x21−x21+x2(1+x2)2−(1−x2)2
Cancelling the terms we get:-
cos−11+x21−x2=tan−11−x2(1+x2)2−(1−x2)2
Now using the following identity:-
(a+b)2−(a−b)2=4ab
We get:-
cos−11+x21−x2=tan−1(1−x24(1)(x2))
Solving it further we get:-
cos−11+x21−x2=tan−1(1−x24x2)
Taking the square root we get:-
cos−11+x21−x2=tan−1(1−x22x)