Solveeit Logo

Question

Mathematics Question on Properties of Inverse Trigonometric Functions

The value of tan[2tan115π4]\tan \left[2\,\tan^{-1}\frac{1}{5}-\frac{\pi}{4}\right] is

A

0

B

1

C

717-\frac{7}{17}

D

none of these.

Answer

717-\frac{7}{17}

Explanation

Solution

2tan115=tan115+tan1152\,tan^{-1} \frac{1}{5} = tan^{-1} \frac{1}{5} +tan^{-1} \frac{1}{5} =tan115+1511515= tan^{-1} \frac{\frac{1}{5} +\frac{1}{5}}{1-\frac{1}{5}\cdot\frac{1}{5}} =tan1252425= tan^{-1} \frac{\frac{2}{5}}{\frac{24}{25}} =tan1512= tan^{-1} \frac{5}{12} tan(2tan115π4)=tan(tan1512π4)tan \left(2tan^{-1} \frac{1}{5} -\frac{\pi}{4}\right) = tan \left(tan^{-1} \frac{5}{12} -\frac{\pi}{4}\right) =tan(tan1512)tanπ41+tan(tan1512)tanπ4=\frac{ tan \left(tan^{-1} \frac{5}{12}\right) - tan \frac{\pi}{4}}{1+tan\left(tan^{-1} \frac{5}{12}\right) tan \frac{\pi}{4}} =51211+5121=\frac{ \frac{5}{12}-1}{1+\frac{5}{12}\cdot1} =7121712= -\frac{\frac{7}{12}}{\frac{17}{12}} =717 = -\frac{7}{17}