Solveeit Logo

Question

Question: The value of \(\tan \dfrac{\pi }{8}\tan \dfrac{3\pi }{8}\) is (A) \(0\) (B) \(1\) (C) \(\dfr...

The value of tanπ8tan3π8\tan \dfrac{\pi }{8}\tan \dfrac{3\pi }{8} is
(A) 00
(B) 11
(C) 12\dfrac{1}{2}
(D) None of these

Explanation

Solution

For answering this question we need to find the value of product of tanπ8\tan \dfrac{\pi }{8} and tan3π8\tan \dfrac{3\pi }{8}. For finding the value of a product we need to find the value of the individual one and then the product. For finding the value of tan(π8)\tan \left( \dfrac{\pi }{8} \right) we will use the formulae tan(A2)=(1cosA1+cosA)\tan \left( \dfrac{A}{2} \right)=\sqrt{\left( \dfrac{1-\cos A}{1+\cos A} \right)} and for the value of tan(3π8)\tan \left( \dfrac{3\pi }{8} \right) we will use tan(π4+A)=1+tanA1tanA\tan \left( \dfrac{\pi }{4}+A \right)=\dfrac{1+\tan A}{1-\tan A} .

Complete step by step answer:
We can write tan(π8)\tan \left( \dfrac{\pi }{8} \right)as tan(π4×12)\tan \left( \dfrac{\pi }{4}\times \dfrac{1}{2} \right) for this form we can apply tan(A2)=(1cosA1+cosA)\tan \left( \dfrac{A}{2} \right)=\sqrt{\left( \dfrac{1-\cos A}{1+\cos A} \right)} for A=45A={{45}^{\circ }} using cos45=12\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} .
After applying we will have tan(π8)=(1cos451+cos45)\tan \left( \dfrac{\pi }{8} \right)=\sqrt{\left( \dfrac{1-\cos {{45}^{\circ }}}{1+\cos {{45}^{\circ }}} \right)} .
We can simplify this by using the value of cos45\cos {{45}^{\circ }} . After simplifying we will have tan(π8)=(1121+12)\tan \left( \dfrac{\pi }{8} \right)=\sqrt{\left( \dfrac{1-\dfrac{1}{\sqrt{2}}}{1+\dfrac{1}{\sqrt{2}}} \right)} .
After this we can simplify what we have and then we will have tan(π8)=(2122+12)\tan \left( \dfrac{\pi }{8} \right)=\sqrt{\left( \dfrac{\dfrac{\sqrt{2}-1}{\sqrt{2}}}{\dfrac{\sqrt{2}+1}{\sqrt{2}}} \right)} .
After simplifying this we will have tan(π8)=(212+1)\tan \left( \dfrac{\pi }{8} \right)=\sqrt{\left( \dfrac{\sqrt{2}-1}{\sqrt{2}+1} \right)} .
For further simplifying this we will multiply and divide it by 21\sqrt{2}-1 after doing this we will have tan(π8)=(212+1)(2121)\tan \left( \dfrac{\pi }{8} \right)=\sqrt{\left( \dfrac{\sqrt{2}-1}{\sqrt{2}+1} \right)\left( \dfrac{\sqrt{2}-1}{\sqrt{2}-1} \right)} .
By further simplifying this we will have tan(π8)=((21)2(2+1)(21))\tan \left( \dfrac{\pi }{8} \right)=\sqrt{\left( \dfrac{{{\left( \sqrt{2}-1 \right)}^{2}}}{\left( \sqrt{2}+1 \right)\left( \sqrt{2}-1 \right)} \right)} .
And by performing further simplifications we will have tan(π8)=((21)221)=21\tan \left( \dfrac{\pi }{8} \right)=\sqrt{\left( \dfrac{{{\left( \sqrt{2}-1 \right)}^{2}}}{2-1} \right)}=\sqrt{2}-1 .
To answer this question we need to find the value of tan(3π8)\tan \left( \dfrac{3\pi }{8} \right) .
This can be written as tan(3π8)=tan(π4+π8)\tan \left( \dfrac{3\pi }{8} \right)=\tan \left( \dfrac{\pi }{4}+\dfrac{\pi }{8} \right) .
This can be further simplified this by using tan(π4+A)=1+tanA1tanA\tan \left( \dfrac{\pi }{4}+A \right)=\dfrac{1+\tan A}{1-\tan A} after applying this we will have tan(3π8)=1+tan(π8)1tan(π8)\tan \left( \dfrac{3\pi }{8} \right)=\dfrac{1+\tan \left( \dfrac{\pi }{8} \right)}{1-\tan \left( \dfrac{\pi }{8} \right)} .
For simplifying this we will use tan(π8)=21\tan \left( \dfrac{\pi }{8} \right)=\sqrt{2}-1 after using this we will have tan(3π8)=1+211(21)\tan \left( \dfrac{3\pi }{8} \right)=\dfrac{1+\sqrt{2}-1}{1-\left( \sqrt{2}-1 \right)} .
After simplifying this we will have tan(3π8)=22(2)\tan \left( \dfrac{3\pi }{8} \right)=\dfrac{\sqrt{2}}{2-\left( \sqrt{2} \right)} .
For performing further simplifications we will take 2\sqrt{2} as common then we will have tan(3π8)=2(2)(21)\tan \left( \dfrac{3\pi }{8} \right)=\dfrac{\sqrt{2}}{\left( \sqrt{2} \right)\left( \sqrt{2}-1 \right)} .
After this we will can simply write it as tan(3π8)=1(21)\tan \left( \dfrac{3\pi }{8} \right)=\dfrac{1}{\left( \sqrt{2}-1 \right)} .
For further simplifying this we will multiply and divide it by 2+1\sqrt{2}+1 and after this we will have tan(3π8)=1(21)(2+12+1)=2+1(21)(2+1)\tan \left( \dfrac{3\pi }{8} \right)=\dfrac{1}{\left( \sqrt{2}-1 \right)}\left( \dfrac{\sqrt{2}+1}{\sqrt{2}+1} \right)=\dfrac{\sqrt{2}+1}{\left( \sqrt{2}-1 \right)\left( \sqrt{2}+1 \right)} .
By final conclusion we will have it as tan(3π8)=2+121=2+1\tan \left( \dfrac{3\pi }{8} \right)=\dfrac{\sqrt{2}+1}{2-1}=\sqrt{2}+1 .
For answering this we will have to find the product of them tan(π8)=21\tan \left( \dfrac{\pi }{8} \right)=\sqrt{2}-1 and tan(3π8)=2+1\tan \left( \dfrac{3\pi }{8} \right)=\sqrt{2}+1 .
We will have tan(π8)tan(3π8)=(21)(2+1)\tan \left( \dfrac{\pi }{8} \right)\tan \left( \dfrac{3\pi }{8} \right)=\left( \sqrt{2}-1 \right)\left( \sqrt{2}+1 \right) after further simplifying we will have tan(π8)tan(3π8)=1\tan \left( \dfrac{\pi }{8} \right)\tan \left( \dfrac{3\pi }{8} \right)=1 .

So, the correct answer is “Option B”.

Note: While solving this type of questions it would be efficient if we remember the value of tan(π8)\tan \left( \dfrac{\pi }{8} \right) this is 21\sqrt{2}-1 . The value of sine and cosine values of these terms is sin(π8)=2122\sin \left( \dfrac{\pi }{8} \right)=\sqrt{\dfrac{\sqrt{2}-1}{2\sqrt{2}}} and cos(π8)=2+122\cos \left( \dfrac{\pi }{8} \right)=\sqrt{\dfrac{\sqrt{2}+1}{2\sqrt{2}}} .