Solveeit Logo

Question

Question: The value of \[\tan \dfrac{\pi }{5}+2\tan \dfrac{2\pi }{5}+4\cot \dfrac{4\pi }{5}\] is: a). \(\cot...

The value of tanπ5+2tan2π5+4cot4π5\tan \dfrac{\pi }{5}+2\tan \dfrac{2\pi }{5}+4\cot \dfrac{4\pi }{5} is:
a). cotπ5\cot \dfrac{\pi }{5}
b). cot2π5\cot \dfrac{2\pi }{5}
c). cot4π5\cot \dfrac{4\pi }{5}
d). cos3π5\cos \dfrac{3\pi }{5}

Explanation

Solution

To solve the above question we will replace tangent function by the ratio of the sine to the cosine function and cot by the ratio of cosine to sine function. Then, we will us the trigonometric properties like cos2θ=cos2θsin2θ\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta , sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta etc. and then solve them to get the simplified form as given in the options.

Complete step by step answer:
Since, we have to find the value of tanπ5+2tan2π5+4cot4π5\tan \dfrac{\pi }{5}+2\tan \dfrac{2\pi }{5}+4\cot \dfrac{4\pi }{5}.
We will start solving the above question just by replacing tangent function by the ratio of the sine to the cosine function and cot by the ratio of cosine to sine function (i.e. tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } and cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta }) .
So, we will write tanπ5+2tan2π5+4cot4π5\tan \dfrac{\pi }{5}+2\tan \dfrac{2\pi }{5}+4\cot \dfrac{4\pi }{5} as the function of sine and cosine function.
Let’s take it as A.
A=sinπ5cosπ5+2sin2π5cos2π5+4cos4π5sin4π5A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+2\dfrac{\sin \dfrac{2\pi }{5}}{\cos \dfrac{2\pi }{5}}+4\dfrac{\cos \dfrac{4\pi }{5}}{\sin \dfrac{4\pi }{5}}
Now, we will write use the property cos2θ=cos2θsin2θ\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta and sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta
We will write cos4π5\cos \dfrac{4\pi }{5} as cos22π5sin22π5{{\cos }^{2}}\dfrac{2\pi }{5}-{{\sin }^{2}}\dfrac{2\pi }{5} and sin4π5\sin \dfrac{4\pi }{5} as 2sin2π5cos2π52\sin \dfrac{2\pi }{5}\cos \dfrac{2\pi }{5} , then we will get:
A=sinπ5cosπ5+2sin2π5cos2π5+4×(cos22π5sin22π5)2sin2π5cos2π5\Rightarrow A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+2\dfrac{\sin \dfrac{2\pi }{5}}{\cos \dfrac{2\pi }{5}}+4\times \dfrac{\left( {{\cos }^{2}}\dfrac{2\pi }{5}-{{\sin }^{2}}\dfrac{2\pi }{5} \right)}{2\sin \dfrac{2\pi }{5}\cos \dfrac{2\pi }{5}}
A=sinπ5cosπ5+2sin2π5cos2π5+2(cos22π5sin22π5)sin2π5cos2π5\Rightarrow A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+2\dfrac{\sin \dfrac{2\pi }{5}}{\cos \dfrac{2\pi }{5}}+2\dfrac{\left( {{\cos }^{2}}\dfrac{2\pi }{5}-{{\sin }^{2}}\dfrac{2\pi }{5} \right)}{\sin \dfrac{2\pi }{5}\cos \dfrac{2\pi }{5}}
Now, after take LCM we will get:
A=sinπ5cosπ5+2sin22π5+2cos22π52sin22π5cos2π5sin2π5\Rightarrow A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+\dfrac{2{{\sin }^{2}}\dfrac{2\pi }{5}+2{{\cos }^{2}}\dfrac{2\pi }{5}-2{{\sin }^{2}}\dfrac{2\pi }{5}}{\cos \dfrac{2\pi }{5}\sin \dfrac{2\pi }{5}}
A=sinπ5cosπ5+2cos22π5cos2π5sin2π5\Rightarrow A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+\dfrac{2{{\cos }^{2}}\dfrac{2\pi }{5}}{\cos \dfrac{2\pi }{5}\sin \dfrac{2\pi }{5}}
A=sinπ5cosπ5+2cos2π5sin2π5\Rightarrow A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+\dfrac{2\cos \dfrac{2\pi }{5}}{\sin \dfrac{2\pi }{5}}
Now, we will again use the property cos2θ=cos2θsin2θ\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta and sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta , to write cos2π5\cos \dfrac{2\pi }{5} as cos2π5sin2π5{{\cos }^{2}}\dfrac{\pi }{5}-{{\sin }^{2}}\dfrac{\pi }{5} and sin2π5\sin \dfrac{2\pi }{5} as 2sinπ5cosπ52\sin \dfrac{\pi }{5}\cos \dfrac{\pi }{5}.
A=sinπ5cosπ5+2(cos2π5sin2π5)2cosπ5sinπ5\Rightarrow A=\dfrac{\sin \dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}}+\dfrac{2\left( {{\cos }^{2}}\dfrac{\pi }{5}-{{\sin }^{2}}\dfrac{\pi }{5} \right)}{2\cos \dfrac{\pi }{5}\sin \dfrac{\pi }{5}}
Now, again after taking LCM, we will get:
A=sin2π5+cos2π5sin2π5cosπ5sinπ5\Rightarrow A=\dfrac{{{\sin }^{2}}\dfrac{\pi }{5}+{{\cos }^{2}}\dfrac{\pi }{5}-{{\sin }^{2}}\dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}\sin \dfrac{\pi }{5}}
A=cos2π5cosπ5sinπ5\Rightarrow A=\dfrac{{{\cos }^{2}}\dfrac{\pi }{5}}{\cos \dfrac{\pi }{5}\sin \dfrac{\pi }{5}}
After cancelling cosπ5\cos \dfrac{\pi }{5} from numerator and denominator we will get:
A=cosπ5sinπ5\Rightarrow A=\dfrac{\cos \dfrac{\pi }{5}}{\sin \dfrac{\pi }{5}}
Since, we know that cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta }, so we can write cosπ5sinπ5\dfrac{\cos \dfrac{\pi }{5}}{\sin \dfrac{\pi }{5}} as cotπ5\cot \dfrac{\pi }{5} .

So, the correct answer is “Option b”.

Note: Students are required to memorize all the formula and whenever they have been given a question which contains tangent functions, they should convert it into a sine and cosine function. It will always make our calculation easier and we can easily solve them by using different properties of trigonometry.