Solveeit Logo

Question

Question: The value of \(\tan \dfrac{\pi }{{16}}\) A. \(\sqrt {4 + 2\sqrt 2} + (\sqrt 2 + 1) \) B. \(\sqrt...

The value of tanπ16\tan \dfrac{\pi }{{16}}
A. 4+22+(2+1)\sqrt {4 + 2\sqrt 2} + (\sqrt 2 + 1)
B. 4+22(2+1)\sqrt 4 + 2\sqrt 2 - (\sqrt 2 + 1)
C. 422(2+1)\sqrt 4 - 2\sqrt 2 - (\sqrt 2 + 1)
D. 4+22(21)\sqrt 4 + 2\sqrt 2 - (\sqrt 2 - 1)

Explanation

Solution

Here in this question you must know the value of the trigonometric function and how to use the trigonometric functions. Use the value of tanθ\tan \theta and do the calculation for finding your answer. Use the identities related to sinθ\sin \theta and cosθ\cos \theta .

Complete step-by-step answer:
We have tanπ16\tan \dfrac{\pi }{{16}}
We can write tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
Here put the values of θ=π16\theta = \dfrac{\pi }{{16}}
tanπ16=sinπ16cosπ16\tan \dfrac{\pi }{{16}} = \dfrac{{\sin \dfrac{\pi }{{16}}}}{{\cos \dfrac{\pi }{{16}}}}
Now multiplying numerator and denominator by 2 and sinπ16\sin \dfrac{\pi }{{16}} for simplifying the function
We have
tanπ16=.22sinπ16cosπ16.sinπ16sinπ16\tan \dfrac{\pi }{{16}} = .\dfrac{2}{2}\dfrac{{\sin \dfrac{\pi }{{16}}}}{{\cos \dfrac{\pi }{{16}}}}.\dfrac{{\sin \dfrac{\pi }{{16}}}}{{\sin \dfrac{\pi }{{16}}}}
Simplifying the function
tanπ16=.2sin2π162cosπ16.sinπ16\tan \dfrac{\pi }{{16}} = .\dfrac{{2{{\sin }^2}\dfrac{\pi }{{16}}}}{{2\cos \dfrac{\pi }{{16}}.\sin \dfrac{\pi }{{16}}}}
Here we know that
cos2θ=12sin2θ\cos 2\theta = 1 - 2{\sin ^2}\theta
2sin2θ=1cos2θ2{\sin ^2}\theta = 1 - \cos 2\theta
and 2sinθcosθ=sin2θ2\sin \theta \cos \theta = \sin 2\theta
using these two identities we can solve the function
2sin2π16=1cos2π162{\sin ^2}\dfrac{\pi }{{16}} = 1 - \cos 2\dfrac{\pi }{{16}}
2cosπ16.sinπ16=sin2π162\cos \dfrac{\pi }{{16}}.\sin \dfrac{\pi }{{16}} = \sin 2\dfrac{\pi }{{16}}
now putting the values in the function
tanπ16=1cos2π16sin2π16\tan \dfrac{\pi }{{16}} = \dfrac{{1 - \cos 2\dfrac{\pi }{{16}}}}{{\sin 2\dfrac{\pi }{{16}}}}
Dividing the θ\theta by 2
tanπ16=1cosπ8sinπ8\tan \dfrac{\pi }{{16}} = \dfrac{{1 - \cos \dfrac{\pi }{8}}}{{\sin \dfrac{\pi }{8}}}
We have one more identity related to cosθ\cos \theta and sinθ\sin \theta that is
cosθ=1+cos2θ2,sinθ=1cos2θ2\cos \theta = \sqrt {\dfrac{{1 + \cos 2\theta }}{2}} ,\sin \theta = \sqrt {\dfrac{{1 - \cos 2\theta }}{2}}
Now using the identities, we get
tanπ16=11+cos2π821cos2π82\tan \dfrac{\pi }{{16}} = \dfrac{{1 - \sqrt {\dfrac{{1 + \cos 2\dfrac{\pi }{8}}}{2}} }}{{\sqrt {\dfrac{{1 - \cos 2\dfrac{\pi }{8}}}{2}} }}
Solving the above function, we get
tanπ16=11+cosπ421cosπ42\tan \dfrac{\pi }{{16}} = \dfrac{{1 - \sqrt {\dfrac{{1 + \cos \dfrac{\pi }{4}}}{2}} }}{{\sqrt {\dfrac{{1 - \cos \dfrac{\pi }{4}}}{2}} }}
Taking the L.C.M
tanπ16=21+cosπ41cosπ4\tan \dfrac{\pi }{{16}} = \dfrac{{\sqrt 2 - \sqrt {1 + \cos \dfrac{\pi }{4}} }}{{\sqrt {1 - \cos \dfrac{\pi }{4}} }}
Putting the values of π4\dfrac{\pi }{4}=12\dfrac{1}{{\sqrt 2 }}
tanπ16=21+12112\tan \dfrac{\pi }{{16}} = \dfrac{{\sqrt 2 - \sqrt {1 + \dfrac{1}{{\sqrt 2 }}} }}{{\sqrt {1 - \dfrac{1}{{\sqrt 2 }}} }}
Taking the L.C.M and solving the equation
tanπ16=22+121\tan \dfrac{\pi }{{16}} = \dfrac{{2 - \sqrt {\sqrt 2 + 1} }}{{\sqrt {\sqrt 2 - 1} }}
Rationalizing the above function, we get
tanπ16=22+121.2+12+1\tan \dfrac{\pi }{{16}} = \dfrac{{2 - \sqrt {\sqrt 2 + 1} }}{{\sqrt {\sqrt 2 - 1} }}.\dfrac{{\sqrt {\sqrt 2 + 1} }}{{\sqrt {\sqrt 2 + 1} }}
tanπ16=22+1(2+1)221\tan \dfrac{\pi }{{16}} = \dfrac{{2\sqrt {\sqrt 2 + 1} - \sqrt {{{(\sqrt 2 + 1)}^2}} }}{{\sqrt {2 - 1} }}
Open the brackets
tanπ16=22+1(2+1)1\tan \dfrac{\pi }{{16}} = \dfrac{{2\sqrt {\sqrt 2 + 1} - (\sqrt 2 + 1)}}{{\sqrt 1 }}
tanπ16=22+1(2+1)\tan \dfrac{\pi }{{16}} = 2\sqrt {\sqrt 2 + 1} - (\sqrt 2 + 1)
Here we know that 4=2\sqrt 4 = 2, now write 4\sqrt 4 on the place of 22
tanπ16=4(2+1)(2+1)\tan \dfrac{\pi }{{16}} = \sqrt {4(\sqrt 2 + 1)} - (\sqrt 2 + 1)
tanπ16=42+4(2+1)\tan \dfrac{\pi }{{16}} = \sqrt {4\sqrt 2 + 4} - (\sqrt 2 + 1)
Here we can write the above function
4+22(2+1)\sqrt 4 + 2\sqrt 2 - (\sqrt 2 + 1)
So, the value of tanπ16=\tan \dfrac{\pi }{{16}} = \sqrt 4 + 2\sqrt 2 - (\sqrt 2 + 1)$

Hence, option B is the correct option from all.

Note: Here students mostly make mistakes in the calculation part. Use the sinθ\sin \theta and cosθ\cos \theta function identities for solving the question. Always rationalizing the function when there are roots in the denominator. Do not get confused and make mistakes in the calculation part of roots and square. You must know the perfect square that will help you to get your correct answer. Try to make the θ\theta like 0,30.45,60,90{0^ \circ },{30^ \circ }{.45^ \circ },{60^ \circ },{90^ \circ }. Always rationalize the equation for simplifying it.