Solveeit Logo

Question

Question: The value of \(\tan {9^ \circ } - \tan {27^ \circ } - \tan {63^ \circ } + \tan {81^ \circ }\) is equ...

The value of tan9tan27tan63+tan81\tan {9^ \circ } - \tan {27^ \circ } - \tan {63^ \circ } + \tan {81^ \circ } is equal to
(A) -1
(B) 0
(C) 1
(D) 4

Explanation

Solution

Hint : To find the value of a given expression we will rearrange the expression. Then we will use the trigonometric identity to rewrite the expression in the form cot\cot . Then we will again rewrite the expression in terms of sine and cosine. By again using the trigonometric identity we resolve the problem in a simpler form of sine and cosine. To convert the equation in the form of sin2θ\sin 2\theta we will multiply and divide the expression by 2. Then we will use the predefined formulas to get the answer.
Formula used:
We are using following trigonometric formulas:
1.tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} and cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}
2.Sin2θ=2sinθcosθ{\mathop{\rm Sin}\nolimits} 2\theta = 2\sin \theta \cos \theta
3.cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1
4. tan(90θ)=cotθ\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta

Complete step-by-step answer :
We have given expressions astan9tan27tan63+tan81\tan {9^ \circ } - \tan {27^ \circ } - \tan {63^ \circ } + \tan {81^ \circ }.
We will rearrange the given expression as:
=tan9+tan81tan27tan63= \tan {9^ \circ } + \tan {81^ \circ } - \tan {27^ \circ } - \tan {63^ \circ }
Then we will substitute 81{81^ \circ } by (909)\left( {{{90}^ \circ } - {9^ \circ }} \right) and 63{63^ \circ } by (9027)\left( {{{90}^ \circ } - {{27}^ \circ }} \right). We will get,
=tan9+tan(909)tan27tan(9027)= \tan {9^ \circ } + \tan \left( {{{90}^ \circ } - {9^ \circ }} \right) - \tan {27^ \circ } - \tan \left( {{{90}^ \circ } - {{27}^ \circ }} \right)
We know that tan(90θ)=cotθ\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta . Hence using this expression in the above expression as:
=tan9+cot9tan27+cot27= \tan {9^ \circ } + \cot {9^ \circ } - \tan {27^ \circ } + \cot {27^ \circ }
We know that tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} and cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }} . hence using these expression, we can rewrite the above expression as:

= \dfrac{{\sin {9^ \circ }}}{{\cos {9^ \circ }}} + \dfrac{{\cos {9^ \circ }}}{{\sin {9^ \circ }}} - \dfrac{{\sin {{27}^ \circ }}}{{\cos {{27}^ \circ }}} - \dfrac{{\cos {{27}^ \circ }}}{{\sin {{27}^ \circ }}}\\\ = \dfrac{{{{\sin }^2}{9^ \circ } + {{\cos }^2}{9^ \circ }}}{{\sin {9^ \circ }\cos {9^ \circ }}} - \dfrac{{{{\sin }^2}{{27}^ \circ } + {{\cos }^2}{{27}^ \circ }}}{{\sin {{27}^ \circ }\cos {{27}^ \circ }}} \end{array}$$ We will use trigonometric identity ${\cos ^2}\theta + {\sin ^2}\theta = 1$ to rewrite the above expression: $$ = \dfrac{1}{{\sin {9^ \circ }\cos {9^ \circ }}} - \dfrac{1}{{\sin {{27}^ \circ }\cos {{27}^ \circ }}}$$ We multiply and divide the above expression by 2, we will get $$ = \dfrac{2}{{2\sin {9^ \circ }\cos {9^ \circ }}} - \dfrac{2}{{2\sin {{27}^ \circ }\cos {{27}^ \circ }}}$$ Now we know that ${\mathop{\rm Sin}\nolimits} 2\theta = 2\sin \theta \cos \theta $ , using this expression we will get $$ = \dfrac{2}{{\sin {{18}^ \circ }}} - \dfrac{2}{{\sin {{54}^ \circ }}}$$ We will substitute $\dfrac{{\sqrt 5 - 1}}{4}$ for $\sin {18^ \circ }$ and $\dfrac{{\sqrt 5 + 1}}{4}$ for $\sin {54^ \circ }$ in the above expression. $$\begin{array}{l} = \dfrac{{2 \times 4}}{{\sqrt 5 - 1}} - \dfrac{{2 \times 4}}{{\sqrt 5 + 1}}\\\ = 4 \end{array}$$ Hence the value of $\tan {9^ \circ } - \tan {27^ \circ } - \tan {63^ \circ } + \tan {81^ \circ }$ is equal to 4 and option (4) is correct. **So, the correct answer is “Option D”.** **Note** : In this question we are using predefined formulas and identities and hence we should have prior knowledge about the identities. The expression$\dfrac{{\sqrt 5 - 1}}{4}$ for $\sin {18^ \circ }$ and $\dfrac{{\sqrt 5 + 1}}{4}$ for $\sin {54^ \circ }$is derived in the trigonometry and hence we need to remember its value. Since, deduction of these values is a separate question.