Question
Mathematics Question on Trigonometric Functions
The value of tan81∘−tan63∘−tan27∘+tan9∘ is equal to
A
1
B
2
C
3
D
4
Answer
4
Explanation
Solution
tan81∘−tan63∘−tan27∘+tan9∘ = \left\\{\tan \left(90^{\circ} -9^{\circ}\right) + \tan 9^{\circ}\right\\} - \left\\{\tan \left(90^{\circ} - 27^{\circ}\right) + \tan27^{\circ}\right\\} =(cot9∘+tan9∘)−(cot27∘+tan27∘) =2cosec18∘−2cosec54∘ (∵tanθ+cotθ=2cosec2θ) =sin18∘2−sin54∘2=sin18∘2−cos36∘2 =5−12×4−5+12×4