Solveeit Logo

Question

Question: The value of \(\tan {81^0} - \tan {63^0} - \tan {27^0} + \tan {9^0}\)is \( \left( A \right).{\...

The value of tan810tan630tan270+tan90\tan {81^0} - \tan {63^0} - \tan {27^0} + \tan {9^0}is
(A). 0 (B). 2 (C). 3 (D). 4  \left( A \right).{\text{ 0}} \\\ \left( B \right).{\text{ 2}} \\\ \left( C \right).{\text{ 3}} \\\ \left( D \right).{\text{ 4}} \\\

Explanation

Solution

Hint: Try to write tanθ\tan \theta in terms of cotθ\cot \theta , then use trigonometric formulas.

Given:tan810tan630tan270+tan90\tan {81^0} - \tan {63^0} - \tan {27^0} + \tan {9^0}
Rewriting above as:
(tan90+tan810)(tan270+tan630) (tan90+tan(90090))(tan270+tan(900270)) (A)  \Rightarrow \left( {\tan {9^0} + \tan {{81}^0}} \right) - \left( {\tan {{27}^0} + \tan {{63}^0}} \right) \\\ \Rightarrow \left( {\tan {9^0} + \tan \left( {{{90}^0} - {9^0}} \right)} \right) - \left( {\tan {{27}^0} + \tan \left( {{{90}^0} - {{27}^0}} \right)} \right){\text{ }} \ldots \left( A \right) \\\
We know that, tan(900θ)=cotθ=cosθsinθ (1)\tan \left( {{{90}^0} - \theta } \right) = \cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}{\text{ }} \ldots \left( 1 \right)
Putting the value of tan(900θ)\tan \left( {{{90}^0} - \theta } \right)from (1)\left( 1 \right)in (A)\left( A \right), we get
tan90+cot90tan270cot270\Rightarrow \tan {9^0} + \cot {9^0} - \tan {27^0} - \cot {27^0}
Now, since tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} and cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}

(sin90cos90+cos90sin90)(sin270cos270+cos270sin270) (sin290+cos290sin90cos90)(sin2270+cos2270sin270cos270)  \therefore \left( {\dfrac{{\sin {9^0}}}{{\cos {9^0}}} + \dfrac{{\cos {9^0}}}{{\sin {9^0}}}} \right) - \left( {\dfrac{{\sin {{27}^0}}}{{\cos {{27}^0}}} + \dfrac{{\cos {{27}^0}}}{{\sin {{27}^0}}}} \right) \\\ \Rightarrow \left( {\dfrac{{{{\sin }^2}{9^0} + {{\cos }^2}{9^0}}}{{\sin {9^0}\cos {9^0}}}} \right) - \left( {\dfrac{{{{\sin }^2}{{27}^0} + {{\cos }^2}{{27}^0}}}{{\sin {{27}^0}\cos {{27}^0}}}} \right) \\\

Using the property sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 in above equation, we get
(1sin90cos90)(1sin270cos270)\Rightarrow \left( {\dfrac{1}{{\sin {9^0}\cos {9^0}}}} \right) - \left( {\dfrac{1}{{\sin {{27}^0}\cos {{27}^0}}}} \right)
Also, we know that sinxcosx=sin2x2\sin x\cos x = \dfrac{{\sin 2x}}{2}

(2sin180)(2sin540) 2(sin540sin180sin180sin540)  \therefore \left( {\dfrac{2}{{\sin {{18}^0}}}} \right) - \left( {\dfrac{2}{{\sin {{54}^0}}}} \right) \\\ \Rightarrow 2\left( {\dfrac{{\sin {{54}^0} - \sin {{18}^0}}}{{\sin {{18}^0}\sin {{54}^0}}}} \right) \\\

Now, by using sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) in above equation, we get
2(2cos(54+182)sin(54182)sin180sin(900360))\Rightarrow 2\left( {\dfrac{{2\cos \left( {\dfrac{{54 + 18}}{2}} \right)\sin \left( {\dfrac{{54 - 18}}{2}} \right)}}{{\sin {{18}^0}\sin \left( {{{90}^0} - {{36}^0}} \right)}}} \right)
using sin(900θ)=cosθ\sin \left( {{{90}^0} - \theta } \right) = \cos \theta in the above equation, we get

2(2cos(722)sin(362)sin180cos360) 2(2cos(360)sin(180)sin180cos360) 4(sin180cos360sin180cos360) 4  \Rightarrow 2\left( {\dfrac{{2\cos \left( {\dfrac{{72}}{2}} \right)\sin \left( {\dfrac{{36}}{2}} \right)}}{{\sin {{18}^0}\cos {{36}^0}}}} \right) \\\ \Rightarrow 2\left( {\dfrac{{2\cos \left( {{{36}^0}} \right)\sin \left( {{{18}^0}} \right)}}{{\sin {{18}^0}\cos {{36}^0}}}} \right) \\\ \Rightarrow 4\left( {\dfrac{{\sin {{18}^0}\cos {{36}^0}}}{{\sin {{18}^0}\cos {{36}^0}}}} \right) \\\ \Rightarrow 4 \\\

\therefore the correct option is (D)\left( D \right).

Note: Whenever there are integer angles inside trigonometric functions whose values are not known to us, always try to convert them by using 900θ{90^0} - \theta in order to make calculation easier.