Question
Question: The value of \(\tan {81^0} - \tan {63^0} - \tan {27^0} + \tan {9^0}\)is \( \left( A \right).{\...
The value of tan810−tan630−tan270+tan90is
(A). 0 (B). 2 (C). 3 (D). 4
Solution
Hint: Try to write tanθ in terms of cotθ, then use trigonometric formulas.
Given:tan810−tan630−tan270+tan90
Rewriting above as:
⇒(tan90+tan810)−(tan270+tan630) ⇒(tan90+tan(900−90))−(tan270+tan(900−270)) …(A)
We know that, tan(900−θ)=cotθ=sinθcosθ …(1)
Putting the value of tan(900−θ)from (1)in (A), we get
⇒tan90+cot90−tan270−cot270
Now, since tanθ=cosθsinθ and cotθ=sinθcosθ
Using the property sin2θ+cos2θ=1 in above equation, we get
⇒(sin90cos901)−(sin270cos2701)
Also, we know that sinxcosx=2sin2x
Now, by using sinA−sinB=2cos(2A+B)sin(2A−B) in above equation, we get
⇒2sin180sin(900−360)2cos(254+18)sin(254−18)
using sin(900−θ)=cosθin the above equation, we get
∴the correct option is (D).
Note: Whenever there are integer angles inside trigonometric functions whose values are not known to us, always try to convert them by using 900−θ in order to make calculation easier.