Solveeit Logo

Question

Question: The value of tan 3A – tan 2A – tan A is equal to: (a) \(\tan 3A\tan 2A\tan A\) (b) \(-\tan 3A\ta...

The value of tan 3A – tan 2A – tan A is equal to:
(a) tan3Atan2AtanA\tan 3A\tan 2A\tan A
(b) tan3Atan2AtanA-\tan 3A\tan 2A\tan A
(c) tanAtan2Atan2Atan3Atan3AtanA\tan A\tan 2A-\tan 2A\tan 3A-\tan 3A\tan A
(d) None of these

Explanation

Solution

Hint:Here, first we can write 3A = A + 2A and then apply tan on both the sides, we will get:
tan(3A)=tan(A+2A)\tan (3A)=\tan (A+2A).
Then we have to apply the trigonometric identity,
tan(A+B)=tanA+tanB1tanAtanB\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}
Now, with the help of this identity we can find the value of tan 3A – tan 2A – tan A.

Complete step-by-step answer:
Here, we have to find the value of tan 3A – tan 2A – tan A.
For that let us take,
3A = A + 2A
Next, by taking tan on both the sides,
tan3A=tan(A+2A)\Rightarrow \tan 3A=\tan (A+2A)
We know by the trigonometric identity that,
tan(A+B)=tanA+tanB1tanAtanB\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}
Here, we have A in place of A and 2A in place of B and by applying this identity,
tan3A=tanA+tan2A1tanAtan2A\Rightarrow \tan 3A=\dfrac{\tan A+\tan 2A}{1-\tan A\tan 2A}
Next, by cross multiplication,
tan3A(1tanAtan2A)=tanA+tan2A\Rightarrow \tan 3A(1-\tan A\tan 2A)=\tan A+\tan 2A
Next, by multiplying with tan 3A we get,
tan3A×1tan3A×tanAtan2A=tanA+tan2A tan3Atan3AtanAtan2A=tanA+tan2A \begin{aligned} & \Rightarrow \tan 3A\times 1-\tan 3A\times \tan A\tan 2A=\tan A+\tan 2A \\\ & \Rightarrow \tan 3A-\tan 3A\tan A\tan 2A=\tan A+\tan 2A \\\ \end{aligned}
Now, by taking tanA+tan2A\tan A+\tan 2A to the left side it becomes tanAtan2A-\tan A-\tan 2A and tan3AtanAtan2A-\tan 3A\tan A\tan 2A to the right side we get tan3AtanAtan2A\tan 3A\tan A\tan 2A,
tan3Atan2AtanA=tan3AtanAtan2A\Rightarrow \tan 3A-\tan 2A-\tan A=\tan 3A\tan A\tan 2A
Hence, we can say that the value of tan3Atan2AtanA=tan3Atan2AtanA\tan 3A-\tan 2A-\tan A=\tan 3A\tan 2A\tan A.
Therefore, the correct answer for this question is option (a).

Note: Here, we can also solve this problem by taking tan3Atan2AtanA=k\tan 3A-\tan 2A-\tan A=k and then taking tan2AtanA–\tan 2A – tan A to the right we get,
tan3A=k+tan2A+tanA\tan 3A=k+\tan 2A+\tan A
Then apply the identity,
tan(A+B)=tanA+tanB1tanAtanB\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} and find the value of k we will get required answer.