Solveeit Logo

Question

Question: The value of \[tan\;27\;tan\;31 + tan\;32\;tan\;31 + tan\;31\;tan\;27\;\] is A.0 B.1 C.2 D.C...

The value of tan  27  tan  31+tan  32  tan  31+tan  31  tan  27  tan\;27\;tan\;31 + tan\;32\;tan\;31 + tan\;31\;tan\;27\; is
A.0
B.1
C.2
D.Can not be determined

Explanation

Solution

Hint : To solve this type of question try to convert in standard forms as we do not know the value of tan  31tan\;31 or tan  32tan\;32 .Let the angles be A,B and C. So to convert in standard form just add all the given angles and find the angle C then find the tan  Ctan\;C in terms of tanB\tan B and tanB\tan B . After finding all these things just put the value of tan  Ctan\;C and simplify then we will get our answer.

Complete step-by-step answer :
From given, we have,
Suppose we add all the given angles
So we have
27+32+31=9027 + 32 + 31 = 90
And suppose the given trigonometric expression as S
S=tan  A  tan  B+tan  B  tan  C+tan  C  tan  AS = tan\;A\;tan\;B + tan\;B\;tan\;C + tan\;C\;tan\;A .......(1)
Or after taking tan  Ctan\;C common we get,
S=tan  A  tan  B+tan  C(tan  A+tan  B)\Rightarrow S = tan\;A\;tan\;B + tan\;C\left( {tan\;A + tan\;B} \right)
where A+B+C=90A + B + C = 90 , and hence, C=90(A+B)C = 90 - \left( {A + B} \right)
now taking tan both side
so we have
tan  C=tan  (90AB)tan\;C = tan\;\left( {90 - A - B} \right)
or,
tan  C=cot  (A+B)tan\;C = cot\;\left( {A + B} \right)
or,
tan  C =1tan  (A+B)tan\;C{\text{ }} = \dfrac{1}{{tan\;\left( {A + B} \right)}}
now applying the tan  (A+B)tan\;\left( {A + B} \right) formula we get
tan  C=1tan  A  tan  Btan  A+tan  Btan\;C = \dfrac{{1 - tan\;A\;tan\;B}}{{tan\;A + tan\;B}}
on cross multiplying
tan  C  (tan  A+tan  B)=1tan  A  tan  Btan\;C\;\left( {tan\;A + tan\;B} \right) = 1 - tan\;A\;tan\;B ....(2)
from (1) and (2)
we have the value of S
S=tan  A  tan  B+tan  C  (tan  A+tan  B)S = tan\;A\;tan\;B + tan\;C\;\left( {tan\;A + tan\;B} \right)
=tan  A    tan  B+(1tan  A    tan  B)= tan\;A\;\;tan\;B + \left( {1 - tan\;A\;\;tan\;B} \right)
Here tan  A  tan  Btan\;A\;tan\;B terms will cancel out each other.
So we have S is equal to
=1= 1
Hence the value of the expression
tan  27  tan  31+tan  32  tan  31+tan  31  tan  27  tan\;27\;tan\;31 + tan\;32\;tan\;31 + tan\;31\;tan\;27\; = 11
So, the correct answer is “Option B”.

Note : To solve this type of question we can use the formula of tan  (A+B+C)tan\;\left( {A + B + C} \right) rather than tan  (A+B)tan\;\left( {A + B} \right) but in this way may you have to face quite more difficulties than the method used in this solution.