Question
Question: The value of \(\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}-\tan {{70}^{\circ }}\) \(\begin{aligned}...
The value of tan20∘+2tan50∘−tan70∘
A)1B)0C)tan50∘
D)None of these
Solution
The above question can be solved by basic definition of trigonometry and using the various identities involved it, the following identities can be used to solve this problem:
tan(A+B)=1−tanAtanBtanA+tanB
tanθ=cot(90−θ)
So, we start by expressing tan70∘=tan(20∘+50∘) and then applying the tan(A+B)=1−tanAtanBtanA+tanB.
Complete step by step solution:
Now write the expression and use simple trigonometric results to it:
tan20∘+2tan50∘−tan70∘
Now we can write tan70∘=tan(20∘+50∘)
The above expression can be written by using the value listed above, we get:
\Rightarrow $$$\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}-\tan \left( {{20}^{\circ }}+{{50}^{\circ }} \right)$
Now using the property of trigonometry for the expression $\tan {{70}^{\circ }}=\tan \left( {{20}^{\circ }}+{{50}^{\circ }} \right)$ we use the property $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$ we get:
\Rightarrow $$$\tan \left( {{20}^{\circ }}+{{50}^{\circ }} \right)=\dfrac{\tan {{20}^{\circ }}+\tan {{50}^{\circ }}}{1-\tan {{20}^{\circ }}\tan {{50}^{\circ }}}Multiplyingthedenominatortermtoleft−handsideintheaboveexpressionandsubstituting\tan {{70}^{\circ }}=\tan \left( {{20}^{\circ }}+{{50}^{\circ }} \right)we get:
$$\Rightarrow $$$$\tan {{70}^{\circ }}\left( 1-\tan {{20}^{\circ }}\tan {{50}^{\circ }} \right)=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}$$
Multiplying each term in the bracket by\tan {{70}^{\circ }}we get:
$$\Rightarrow \tan {{70}^{\circ }}-\tan {{20}^{\circ }}\tan {{70}^{\circ }}\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}$$
Since we know that\tan \theta =\cot \left( 90-\theta \right)thereforewecanwrite:\begin{aligned}
& \tan {{70}^{\circ }}=\tan \left( {{90}^{\circ }}-{{70}^{\circ }} \right) \\
& \Rightarrow \tan {{70}^{\circ }}=\cot {{20}^{\circ }} \\
\end{aligned}
Using this the above expression can be written as:
$$\Rightarrow \tan {{70}^{\circ }}-\tan {{20}^{\circ }}\cot {{20}^{\circ }}\tan {{50}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}$$
Now we can use the property that\tan \theta =\dfrac{1}{\cot \theta }wecanwritetheaboveexpressionasfollows.Substitutethevalueof\tan \theta intermsof\cot \theta $, we get:
⇒tan70∘−tan20∘×tan20∘1tan50∘=tan20∘+tan70∘
The expression becomes: