Solveeit Logo

Question

Question: The value of $\tan^{-1}\left[\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right], |x|...

The value of tan1[1+x2+1x21+x21x2],x12,x0,\tan^{-1}\left[\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right], |x|\le \frac{1}{\sqrt{2}}, x\ne0, is equal to [JEE(Main)-2017]

A

π412cos1x2\frac{\pi}{4}-\frac{1}{2}\cos^{-1}x^2

B

π4+12cos1x2\frac{\pi}{4}+\frac{1}{2}\cos^{-1}x^2

C

π4cos1x2\frac{\pi}{4}-\cos^{-1}x^2

D

π4+cos1x2\frac{\pi}{4}+\cos^{-1}x^2

Answer

π4+12cos1x2\frac{\pi}{4}+\frac{1}{2}\cos^{-1}x^2

Explanation

Solution

Let the given expression be yy. y=tan1[1+x2+1x21+x21x2]y = \tan^{-1}\left[\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right]

The domain is given as x12|x| \le \frac{1}{\sqrt{2}}, x0x \ne 0. Squaring the inequality, we get x212x^2 \le \frac{1}{2}. Since x0x \ne 0, x20x^2 \ne 0. Also, x20x^2 \ge 0 for real xx. Thus, 0<x2120 < x^2 \le \frac{1}{2}.

Let's make the substitution x2=cosθx^2 = \cos \theta. Since 0<x2120 < x^2 \le \frac{1}{2}, we have 0<cosθ120 < \cos \theta \le \frac{1}{2}. As x20x^2 \ge 0, cosθ0\cos \theta \ge 0. The range of θ=cos1(x2)\theta = \cos^{-1}(x^2) for x2(0,1/2]x^2 \in (0, 1/2] is [cos1(1/2),cos1(0))[\cos^{-1}(1/2), \cos^{-1}(0)), which is [π3,π2)[\frac{\pi}{3}, \frac{\pi}{2}).

Now substitute x2=cosθx^2 = \cos \theta into the expression: y=tan1[1+cosθ+1cosθ1+cosθ1cosθ]y = \tan^{-1}\left[\frac{\sqrt{1+\cos \theta}+\sqrt{1-\cos \theta}}{\sqrt{1+\cos \theta}-\sqrt{1-\cos \theta}}\right] Using the half-angle identities 1+cosθ=2cos2(θ/2)1+\cos \theta = 2\cos^2(\theta/2) and 1cosθ=2sin2(θ/2)1-\cos \theta = 2\sin^2(\theta/2): 1+cosθ=2cos2(θ/2)=2cos(θ/2)\sqrt{1+\cos \theta} = \sqrt{2\cos^2(\theta/2)} = \sqrt{2}|\cos(\theta/2)| 1cosθ=2sin2(θ/2)=2sin(θ/2)\sqrt{1-\cos \theta} = \sqrt{2\sin^2(\theta/2)} = \sqrt{2}|\sin(\theta/2)|

The range of θ\theta is [π3,π2)[\frac{\pi}{3}, \frac{\pi}{2}). The range of θ/2\theta/2 is [π6,π4)[\frac{\pi}{6}, \frac{\pi}{4}). In this range, both cos(θ/2)\cos(\theta/2) and sin(θ/2)\sin(\theta/2) are positive. So, cos(θ/2)=cos(θ/2)|\cos(\theta/2)| = \cos(\theta/2) and sin(θ/2)=sin(θ/2)|\sin(\theta/2)| = \sin(\theta/2).

Substituting these into the expression for yy: y=tan1[2cos(θ/2)+2sin(θ/2)2cos(θ/2)2sin(θ/2)]y = \tan^{-1}\left[\frac{\sqrt{2}\cos(\theta/2)+\sqrt{2}\sin(\theta/2)}{\sqrt{2}\cos(\theta/2)-\sqrt{2}\sin(\theta/2)}\right] y=tan1[cos(θ/2)+sin(θ/2)cos(θ/2)sin(θ/2)]y = \tan^{-1}\left[\frac{\cos(\theta/2)+\sin(\theta/2)}{\cos(\theta/2)-\sin(\theta/2)}\right]

To simplify the expression inside the tan1\tan^{-1}, divide the numerator and the denominator by cos(θ/2)\cos(\theta/2): y=tan1[cos(θ/2)cos(θ/2)+sin(θ/2)cos(θ/2)cos(θ/2)cos(θ/2)sin(θ/2)cos(θ/2)]y = \tan^{-1}\left[\frac{\frac{\cos(\theta/2)}{\cos(\theta/2)}+\frac{\sin(\theta/2)}{\cos(\theta/2)}}{\frac{\cos(\theta/2)}{\cos(\theta/2)}-\frac{\sin(\theta/2)}{\cos(\theta/2)}}\right] y=tan1[1+tan(θ/2)1tan(θ/2)]y = \tan^{-1}\left[\frac{1+\tan(\theta/2)}{1-\tan(\theta/2)}\right]

This expression is in the form 1+tanA1tanA\frac{1+\tan A}{1-\tan A}, which is the expansion of tan(π4+A)\tan(\frac{\pi}{4}+A). So, y=tan1[tan(π4+θ2)]y = \tan^{-1}\left[\tan(\frac{\pi}{4}+\frac{\theta}{2})\right].

Now we need to evaluate tan1(tan(ϕ))\tan^{-1}(\tan(\phi)). This is equal to ϕ\phi if ϕ\phi is in the principal value range of tan1\tan^{-1}, which is (π2,π2)(-\frac{\pi}{2}, \frac{\pi}{2}). The range of θ/2\theta/2 is [π6,π4)[\frac{\pi}{6}, \frac{\pi}{4}). The range of π4+θ2\frac{\pi}{4}+\frac{\theta}{2} is [π4+π6,π4+π4)[\frac{\pi}{4}+\frac{\pi}{6}, \frac{\pi}{4}+\frac{\pi}{4}). π4+π6=3π+2π12=5π12\frac{\pi}{4}+\frac{\pi}{6} = \frac{3\pi+2\pi}{12} = \frac{5\pi}{12}. π4+π4=2π4=π2\frac{\pi}{4}+\frac{\pi}{4} = \frac{2\pi}{4} = \frac{\pi}{2}. So the range of π4+θ2\frac{\pi}{4}+\frac{\theta}{2} is [5π12,π2)[\frac{5\pi}{12}, \frac{\pi}{2}). This interval [5π12,π2)[\frac{5\pi}{12}, \frac{\pi}{2}) is a subset of the principal value range (π2,π2)(-\frac{\pi}{2}, \frac{\pi}{2}). Therefore, y=π4+θ2y = \frac{\pi}{4}+\frac{\theta}{2}.

Substitute back θ\theta in terms of x2x^2. We used x2=cosθx^2 = \cos \theta, so θ=cos1(x2)\theta = \cos^{-1}(x^2). y=π4+cos1(x2)2y = \frac{\pi}{4}+\frac{\cos^{-1}(x^2)}{2}.

Comparing this result with the given options, our result matches option (2).

The final answer is π4+12cos1x2\frac{\pi}{4}+\frac{1}{2}\cos^{-1}x^2.