Solveeit Logo

Question

Question: The value of $\tan^{-1} \left[ \frac{1}{4\sqrt{3}} \sum_{n=0}^{10} \frac{1}{\cos(\frac{7\pi}{12}+\fr...

The value of tan1[143n=0101cos(7π12+nπ2)cos(7π12+(n+1)π2)]\tan^{-1} \left[ \frac{1}{4\sqrt{3}} \sum_{n=0}^{10} \frac{1}{\cos(\frac{7\pi}{12}+\frac{n\pi}{2})\cos(\frac{7\pi}{12}+\frac{(n+1)\pi}{2})} \right] in the interval (π2,π2)(-\frac{\pi}{2}, \frac{\pi}{2}) equals

Answer

π6\frac{\pi}{6}

Explanation

Solution

Let the given expression be EE. E=tan1[143n=0101cos(7π12+nπ2)cos(7π12+(n+1)π2)]E = \tan^{-1} \left[ \frac{1}{4\sqrt{3}} \sum_{n=0}^{10} \frac{1}{\cos(\frac{7\pi}{12}+\frac{n\pi}{2})\cos(\frac{7\pi}{12}+\frac{(n+1)\pi}{2})} \right].

Let θn=7π12+nπ2\theta_n = \frac{7\pi}{12}+\frac{n\pi}{2}. The general term of the sum is 1cos(θn)cos(θn+1)\frac{1}{\cos(\theta_n)\cos(\theta_{n+1})}. We have θn+1θn=(7π12+(n+1)π2)(7π12+nπ2)=π2\theta_{n+1} - \theta_n = (\frac{7\pi}{12}+\frac{(n+1)\pi}{2}) - (\frac{7\pi}{12}+\frac{n\pi}{2}) = \frac{\pi}{2}.

Consider the identity tan(B)tan(A)=sin(BA)cos(A)cos(B)\tan(B) - \tan(A) = \frac{\sin(B-A)}{\cos(A)\cos(B)}. Let A=θnA = \theta_n and B=θn+1B = \theta_{n+1}. Then BA=π2B-A = \frac{\pi}{2}. sin(BA)=sin(π2)=1\sin(B-A) = \sin(\frac{\pi}{2}) = 1. So, tan(θn+1)tan(θn)=1cos(θn)cos(θn+1)\tan(\theta_{n+1}) - \tan(\theta_n) = \frac{1}{\cos(\theta_n)\cos(\theta_{n+1})}.

The sum is a telescoping series: S=n=0101cos(θn)cos(θn+1)=n=010(tan(θn+1)tan(θn))S = \sum_{n=0}^{10} \frac{1}{\cos(\theta_n)\cos(\theta_{n+1})} = \sum_{n=0}^{10} (\tan(\theta_{n+1}) - \tan(\theta_n)). S=(tan(θ1)tan(θ0))+(tan(θ2)tan(θ1))++(tan(θ11)tan(θ10))S = (\tan(\theta_1) - \tan(\theta_0)) + (\tan(\theta_2) - \tan(\theta_1)) + \dots + (\tan(\theta_{11}) - \tan(\theta_{10})). S=tan(θ11)tan(θ0)S = \tan(\theta_{11}) - \tan(\theta_0).

We need to calculate θ0\theta_0 and θ11\theta_{11}. θ0=7π12+0π2=7π12\theta_0 = \frac{7\pi}{12} + \frac{0\pi}{2} = \frac{7\pi}{12}. θ11=7π12+11π2=7π12+66π12=73π12\theta_{11} = \frac{7\pi}{12} + \frac{11\pi}{2} = \frac{7\pi}{12} + \frac{66\pi}{12} = \frac{73\pi}{12}.

Now we calculate tan(θ0)\tan(\theta_0) and tan(θ11)\tan(\theta_{11}). tan(θ0)=tan(7π12)=tan(3π12+4π12)=tan(π4+π3)\tan(\theta_0) = \tan(\frac{7\pi}{12}) = \tan(\frac{3\pi}{12} + \frac{4\pi}{12}) = \tan(\frac{\pi}{4} + \frac{\pi}{3}). Using the formula tan(A+B)=tanA+tanB1tanAtanB\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}: tan(7π12)=tan(π/4)+tan(π/3)1tan(π/4)tan(π/3)=1+3113=1+313\tan(\frac{7\pi}{12}) = \frac{\tan(\pi/4) + \tan(\pi/3)}{1 - \tan(\pi/4)\tan(\pi/3)} = \frac{1 + \sqrt{3}}{1 - 1 \cdot \sqrt{3}} = \frac{1 + \sqrt{3}}{1 - \sqrt{3}}. Multiply numerator and denominator by 1+31+\sqrt{3}: tan(7π12)=(1+3)2(13)(1+3)=1+3+2313=4+232=23\tan(\frac{7\pi}{12}) = \frac{(1+\sqrt{3})^2}{(1-\sqrt{3})(1+\sqrt{3})} = \frac{1 + 3 + 2\sqrt{3}}{1 - 3} = \frac{4 + 2\sqrt{3}}{-2} = -2 - \sqrt{3}.

tan(θ11)=tan(73π12)\tan(\theta_{11}) = \tan(\frac{73\pi}{12}). 73π12=72π+π12=6π+π12\frac{73\pi}{12} = \frac{72\pi + \pi}{12} = 6\pi + \frac{\pi}{12}. Using the property tan(nπ+x)=tan(x)\tan(n\pi + x) = \tan(x) for integer nn: tan(73π12)=tan(6π+π12)=tan(π12)\tan(\frac{73\pi}{12}) = \tan(6\pi + \frac{\pi}{12}) = \tan(\frac{\pi}{12}). tan(π12)=tan(15)=tan(4530)\tan(\frac{\pi}{12}) = \tan(15^\circ) = \tan(45^\circ - 30^\circ). Using the formula tan(AB)=tanAtanB1+tanAtanB\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}: tan(π12)=tan(45)tan(30)1+tan(45)tan(30)=1131+113=3133+13=313+1\tan(\frac{\pi}{12}) = \frac{\tan(45^\circ) - \tan(30^\circ)}{1 + \tan(45^\circ)\tan(30^\circ)} = \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \cdot \frac{1}{\sqrt{3}}} = \frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}} = \frac{\sqrt{3}-1}{\sqrt{3}+1}. Multiply numerator and denominator by 31\sqrt{3}-1: tan(π12)=(31)2(3+1)(31)=3+12331=4232=23\tan(\frac{\pi}{12}) = \frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)} = \frac{3 + 1 - 2\sqrt{3}}{3 - 1} = \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3}.

The sum S=tan(θ11)tan(θ0)=(23)(23)=23+2+3=4S = \tan(\theta_{11}) - \tan(\theta_0) = (2 - \sqrt{3}) - (-2 - \sqrt{3}) = 2 - \sqrt{3} + 2 + \sqrt{3} = 4.

The expression inside the inverse tangent is 143S=1434=13\frac{1}{4\sqrt{3}} \cdot S = \frac{1}{4\sqrt{3}} \cdot 4 = \frac{1}{\sqrt{3}}.

We need to find the value of tan1(13)\tan^{-1}(\frac{1}{\sqrt{3}}) in the interval (π2,π2)(-\frac{\pi}{2}, \frac{\pi}{2}). The principal value of tan1(13)\tan^{-1}(\frac{1}{\sqrt{3}}) is π6\frac{\pi}{6}. Since π2<π6<π2-\frac{\pi}{2} < \frac{\pi}{6} < \frac{\pi}{2}, the value is π6\frac{\pi}{6}.