Solveeit Logo

Question

Question: The value of \({{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)\) is equal to (a) \(\dfrac{\...

The value of tan1(sin21cos2){{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right) is equal to
(a) π21\dfrac{\pi }{2}-1
(b) 2π22-\dfrac{\pi }{2}
(c) 1π41-\dfrac{\pi }{4}
(d) π41\dfrac{\pi }{4}-1

Explanation

Solution

In order to solve this problem, we need to know multiple numbers of trigonometric identities and formula. The formulas we need to know are as follows, sin2x=2sinx×cosx\sin 2x=2\sin x\times \cos x, cos2x=cos2xsin2x\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x, sin21+cos21=1{{\sin }^{2}}1+{{\cos }^{2}}1=1 , a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) and tan(ab)=tanatanb1+tana.tanb\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a.\tan b} and tan(x)=tanx\tan \left( -x \right)=-\tan x.

Complete step-by-step solution:
We are given the expression and we need to find the value of it.
The expression is tan1(sin21cos2){{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right) .
In order to simplify this, we need to know certain identities.
The identities are sin2x=2sinx×cosx\sin 2x=2\sin x\times \cos x
And cos2x=cos2xsin2x\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x
Using these identities, we get,
tan1(sin21cos2)=tan1(2sin1.cos11cos21sin21){{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{2\sin 1.\cos 1-1}{{{\cos }^{2}}1-{{\sin }^{2}}1} \right)
We can now use the rule that a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) in the denominator, we get,
tan1(sin21cos2)=tan1(2sin1.cos11(cos1+sin1)(cos1sin1)){{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{2\sin 1.\cos 1-1}{\left( \cos 1+\sin 1 \right)\left( \cos 1-\sin 1 \right)} \right)
We can write 1 as sin21+cos21{{\sin }^{2}}1+{{\cos }^{2}}1 because of the identity that sin21+cos21=1{{\sin }^{2}}1+{{\cos }^{2}}1=1 .
The equation becomes,
tan1(sin21cos2)=tan1(2sin1.cos1(sin21+cos21)(cos1+sin1)(cos1sin1)){{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{2\sin 1.\cos 1-\left( {{\sin }^{2}}1+{{\cos }^{2}}1 \right)}{\left( \cos 1+\sin 1 \right)\left( \cos 1-\sin 1 \right)} \right)
In the numerator, we can combine all the terms using the identity (ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab ,
We get,
tan1(sin21cos2)=tan1((cos1sin1)2(cos1+sin1)(cos1sin1)){{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{-{{\left( \cos 1-\sin 1 \right)}^{2}}}{\left( \cos 1+\sin 1 \right)\left( \cos 1-\sin 1 \right)} \right)
We can cancel few of the terms form numerator as well as the denominator.
After solving we get,
tan1(sin21cos2)=tan1((cos1sin1)(cos1+sin1)){{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{-\left( \cos 1-\sin 1 \right)}{\left( \cos 1+\sin 1 \right)} \right)
Taking the cos 1 common from the numerator we get,

& {{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{-\cos 1\left( 1-\tan 1 \right)}{\cos 1\left( 1+\tan 1 \right)} \right) \\\ & ={{\tan }^{-1}}\left( \dfrac{-\left( 1-\tan 1 \right)}{\left( 1+\tan 1 \right)} \right) \end{aligned}$$ We knew that $\tan \dfrac{\pi }{4}=1$ , substituting we get, $${{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{-\left( \tan \dfrac{\pi }{4}-\tan 1 \right)}{\left( 1+\tan \dfrac{\pi }{4}.\tan 1 \right)} \right)$$ We can see that $$\dfrac{\left( \tan \dfrac{\pi }{4}-\tan 1 \right)}{\left( 1+\tan \dfrac{\pi }{4}.\tan 1 \right)}={{\tan }^{-1}}\left( \dfrac{\pi }{4}-1 \right)$$. We can use identity $\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a.\tan b}$ . Substituting we get, $${{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( -\tan \left( \dfrac{\pi }{4}-1 \right) \right)$$ We need to take the negative inside. We must know the property $\tan \left( -x \right)=-\tan x$ . Solving this we get, $$\begin{aligned} & {{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \tan \left( 1-\dfrac{\pi }{4} \right) \right) \\\ & =1-\dfrac{\pi }{4} \end{aligned}$$ **Hence, the correct option is (c).** **Note:** In this problem, the main trick is to know which formula to apply when. Also, many tend to make the wrong approach. Another approach that is usually taken is as follows,$$\begin{aligned} & {{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{\sin 2}{\cos 2}-\dfrac{1}{\cos 2} \right) \\\ & ={{\tan }^{-1}}\left( \tan 2-\sec 2 \right) \\\ & =2-{{\tan }^{-1}}\left( \sec 2 \right) \end{aligned}$$ But this is not the correct approach to take.