Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

The value of tan113+tan115+tan117+tan118\tan^{-1}\frac{1}{3}+\tan^{-1}\frac{1}{5}+\tan^{-1}\frac{1}{7}+\tan^{-1}\frac{1}{8} is

A

π\pi

B

π4\frac{\pi}{4}

C

3π4\frac{3\pi}{4}

D

none of these.

Answer

π4\frac{\pi}{4}

Explanation

Solution

tan113+tan115+tan117+tan118tan^{-1} \frac{1}{3} +tan ^{-1} \frac{1}{5} +tan^{-1} \frac{1}{7} +tan^{-1} \frac{1}{8} =tan113+151115+tan117+151156= tan^{-1} \frac{\frac{1}{3}+\frac{1}{5}}{1-\frac{1}{15}} + tan^{-1}\frac{ \frac{1}{7}+\frac{1}{5}}{1- \frac{1}{56}} =tan1814+tan11555= tan^{-1} \frac{8}{14} + tan^{-1} \frac{15}{55} =tan147+tan1311= tan^{-1} \frac{4}{7} +tan^{-1} \frac{3}{11} =tan147+311147311+tan16565= tan^{-1} \frac{\frac{4}{7}+\frac{3}{11}}{1-\frac{4}{7}\cdot\frac{3}{11}} + tan^{-1} \frac{65}{65} =tan11=π4 = tan^{-1} 1 = \frac{\pi}{4}