Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The value of tan(1)+tan(89) \tan( 1^\circ) +\, tan(89^\circ) is

A

1sin(1)\frac {1} {sin( 1^\circ)}

B

2sin(2)\frac {2} {sin( 2^\circ)}

C

2sin(1)\frac {2} {sin( 1^\circ)}

D

1sin(2)\frac {1} {sin( 2^\circ)}

Answer

2sin(2)\frac {2} {sin( 2^\circ)}

Explanation

Solution

tan(1)+tan(89)=tan(1)+tan(901)\tan \left(1^{\circ}\right)+\tan \left(89^{\circ}\right)=\tan \left(1^{\circ}\right)+\tan \left(90^{\circ}-1^{\circ}\right)
=tan(1)+cot(1)=\tan \left(1^{\circ}\right)+\cot \left(1^{\circ}\right)
=sin(1)cos(1)+cos(1)sin(1)=\frac{\sin \left(1^{\circ}\right)}{\cos \left(1^{\circ}\right)}+\frac{\cos \left(1^{\circ}\right)}{\sin \left(1^{\circ}\right)}
=sin2(1)+cos2(1)cos(1)sin(1)=\frac{\sin ^{2}\left(1^{\circ}\right)+\cos ^{2}\left(1^{\circ}\right)}{\cos \left(1^{\circ}\right) \sin \left(1^{\circ}\right)}
=1sin(1)cos(1)=\frac{1}{\sin \left(1^{\circ}\right) \cos \left(1^{\circ}\right)}
=22sin(1)cos(1)=2sin(2)=\frac{2}{2 \sin \left(1^{\circ}\right) \cos \left(1^{\circ}\right)}=\frac{2}{\sin \left(2^{\circ}\right)}