Solveeit Logo

Question

Question: The value of \[\tan ({1^ \circ }) + \tan ({89^ \circ })\]is___ \[ A.\dfrac{1}{{\sin ({1^ \circ...

The value of tan(1)+tan(89)\tan ({1^ \circ }) + \tan ({89^ \circ })is___

A.1sin(1) B.2sin(2) C.2sin(1) D.1sin(2)  A.\dfrac{1}{{\sin ({1^ \circ })}} \\\ B.\dfrac{2}{{\sin ({2^ \circ })}} \\\ C.\dfrac{2}{{\sin ({1^ \circ })}} \\\ D.\dfrac{1}{{\sin ({2^ \circ })}} \\\
Explanation

Solution

We will use the trigonometric ratios of complementary angles. The complementary angle of tanθ\tan \theta is cot(90θ)\cot ({90^ \circ } - \theta ). We also have to use the trigonometric identity sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta in the further parts of the question.

Complete step-by-step answer:
We are given two trigonometric ratios in the question tan(1and tan(89)tan({{\text{1}}^ \circ }{\text{) }}and{\text{ }}tan({89^ \circ }).
We will proceed further by converting tan(1)tan({{\text{1}}^ \circ }{\text{)}} into its complementary angle.
tan(1) = cot(90 - 1)=cot(89)tan({{\text{1}}^ \circ }{\text{) = cot(90 - 1}}{{\text{)}}^ \circ } = \cot ({89^ \circ })
Therefore,

tan(1)+tan(89) =tan(9089)+tan(89) =cot(89)+tan(89)  \tan ({1^ \circ }) + \tan ({89^ \circ }) \\\ = \tan ({90^ \circ } - {89^ \circ }) + \tan ({89^ \circ }) \\\ = \cot ({89^ \circ }) + \tan ({89^ \circ }) \\\

Now, we will split the ratios into sin\sin and cos\cos
cos(89)sin(89)+sin(89)cos(89)\Rightarrow \dfrac{{\cos ({{89}^ \circ })}}{{\sin ({{89}^ \circ })}} + \dfrac{{\sin ({{89}^ \circ })}}{{\cos ({{89}^ \circ })}}
We will take the LCM of the two denominators,
cos2(89)+sin2(89)cos(89)sin(89)\Rightarrow \dfrac{{{{\cos }^2}({{89}^ \circ }) + {{\sin }^2}({{89}^ \circ })}}{{\cos ({{89}^ \circ })\sin ({{89}^ \circ })}}
We know that cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1, so
1cos(89)sin(89)\Rightarrow \dfrac{1}{{\cos ({{89}^ \circ })\sin ({{89}^ \circ })}}
Now, we will multiply 22 in both the numerator and denominator,

2×12×cos(89)sin(89) =22sin(89)cos(89)  \Rightarrow \dfrac{{2 \times 1}}{{2 \times \cos ({{89}^ \circ })\sin ({{89}^ \circ })}} \\\ = \dfrac{2}{{2\sin ({{89}^ \circ })\cos ({{89}^ \circ })}} \\\

We know that sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta , so 2sin(89)cos(89)=sin2×892\sin ({89^ \circ })\cos ({89^ \circ }) = \sin 2 \times {89^ \circ }.
Therefore,

22sin(89)cos(89) =2sin(2×89) =2sin(178) =2sin(1802)  \dfrac{2}{{2\sin ({{89}^ \circ })\cos ({{89}^ \circ })}} \\\ = \dfrac{2}{{\sin (2 \times {{89}^ \circ })}} \\\ = \dfrac{2}{{\sin ({{178}^ \circ })}} \\\ = \dfrac{2}{{\sin ({{180}^ \circ } - {2^ \circ })}} \\\

Angle θ\theta lies in the first quadrant, where, 90>θ>090^\circ > \theta > 0^\circ and (180θ)\left( {180^\circ - \theta } \right) lies in the 2nd quadrant. In the first and the second quadrant, sinθsin\theta is always positive.
So,sin(180θ)=sinθsin\left( {{{180}^ \circ } - \theta } \right) = sin\theta
Therefore,

2sin(1802) =2sin(2)  \dfrac{2}{{\sin ({{180}^ \circ } - {2^ \circ })}} \\\ = \dfrac{2}{{\sin ({2^ \circ })}} \\\

tan(1)+tan(89)=2sin(2)\therefore \tan (1^\circ ) + \tan (89^\circ ) = \dfrac{2}{{\sin (2^\circ )}}
Thus, the answer is option B.

Note: In these types of questions, we need to remember all the trigonometric identities that we have studied. All the trigonometric formulas are very important to solve problems like these.