Solveeit Logo

Question

Question: The value of \( \tan 1^\circ .\tan 2^\circ .\tan 3^\circ ...\tan 89^\circ = \) A.0 B) 1 C) ...

The value of tan1.tan2.tan3...tan89=\tan 1^\circ .\tan 2^\circ .\tan 3^\circ ...\tan 89^\circ =
A.0
B) 1
C) -1
D) 2

Explanation

Solution

Hint : There are many ways to solve this question, first of all, we will break above series from tan1\tan 1^\circ to tan44\tan 44^\circ and tan46\tan 46^\circ to tan89\tan 89^\circ and keep tan45\tan 45^\circ separate from both the series as we know that the value of tan45\tan 45^\circ is 1. Then we will convert the second series from tan46\tan 46^\circ into tan(9044)\tan (90 - 44)^\circ to make it a series of cot\cot , so that we can cancel out tanx\tan x with cotx\cot x .

Complete step-by-step answer :
tan1.tan2.tan3...tan89\tan 1^\circ .\tan 2^\circ .\tan 3^\circ ...\tan 89^\circ
We will break above question into two series and keep tan45\tan 45^\circ separate from both series as shown below:
(tan1.tan2.tan3...tan44)(tan45)(tan46tan47tan48...tan89)(\tan 1^\circ .\tan 2^\circ .\tan 3^\circ ...\tan 44^\circ )(\tan 45^\circ )(\tan 46^\circ \tan 47^\circ \tan 48^\circ ...\tan 89^\circ )
We will keep first series and tan45\tan 45^\circ as it is and solving rest of the series as we can write tan46=tan(9044)\tan 46^\circ = \tan (90 - 44)^\circ and so on
=(tan1.tan2.tan3...tan44)(tan45)tan(9044)tan(9043)(9042)...tan(901)= (\tan 1^\circ .\tan 2^\circ .\tan 3^\circ ...\tan 44^\circ )(\tan 45^\circ )\tan (90^\circ - 44^\circ )\tan (90^\circ - 43^\circ )(90^\circ - 42^\circ )...\tan (90^\circ - 1^\circ )
We know that we have an identity in trigonometry tan(90x)=cotx\tan \left( {90 - x} \right) = \cot x , as 90x90^\circ - x will belongs to first quadrant, where tan(90x)\tan \left( {90 - x} \right) will be cotx\cot x and sign will remain positive, as all trigonometry function are positive in first quadrant. Therefore we can write tan(9044)=tan44\tan (90 - 44)^\circ = \tan 44^\circ and so on.
=(tan1.tan2.tan3...tan44)(tan45)(cot44cot43cot42...cot1)= (\tan 1^\circ .\tan 2^\circ .\tan 3^\circ ...\tan 44^\circ )(\tan 45^\circ )(\cot 44^\circ \cot 43^\circ \cot 42^\circ ...\cot 1^\circ )
Now, we will take a similar angle together as shown below, as we can put an identity into it.
=(tan1.cot1.tan2.cot2.tan3.cot3...tan44.cot44)(tan45)= (\tan 1^\circ .\cot 1^\circ .\tan 2^\circ .\cot 2^\circ .\tan 3^\circ .\cot 3^\circ ...\tan 44^\circ .\cot 44^\circ )(\tan 45^\circ )
Here, we will put the value of tan45=1\tan 45^\circ = 1 and also apply an identity which we know tanx.cotx=1\tan x.\cot x = 1
=1.1.1.1.11n= 1.1.1 \ldots .1.1 \Rightarrow {1^n}
=1
Hence the result of the above series is 1. So option b is the right option.
So, the correct answer is “Option B”.

Note : Second method to solve above question:
We know that we have an identity in trigonometry tan(90x)=cotx\tan \left( {90 - x} \right) = \cot x
Therefore tan1=cot89\tan 1^\circ = \cot 89^\circ and tan2=cot88\tan 2^\circ = \cot 88^\circ so on, we will convert above series from tan1\tan 1^\circ to tan44\tan 44^\circ into cot series.
=(cot89.cot88.cot87...cot46)(tan45)(tan46tan47tan48...tan89)= (\cot 89^\circ .\cot 88^\circ .\cot 87^\circ ...\cot 46^\circ )(\tan 45^\circ )(\tan 46^\circ \tan 47^\circ \tan 48^\circ ...\tan 89^\circ )
We change tan into cot as we know that tanx=1cotx\tan x = \dfrac{1}{{\cot x}} as shown below.
=(cot89.cot88.cot87...cot46)(tan45)(1cot46.1cot47.1cot48...1cot89)= (\cot 89^\circ .\cot 88^\circ .\cot 87^\circ ...\cot 46^\circ )(\tan 45^\circ )(\dfrac{1}{{\cot 46^\circ }}.\dfrac{1}{{\cot 47^\circ }}.\dfrac{1}{{\cot 48^\circ }}...\dfrac{1}{{\cot 89^\circ }})
Now, we will take similar angle together as shown below
(cot89.1cot89cot881cot88.cot87.1cot87...cot46.1cot46)(tan45)\Rightarrow (\cot 89^\circ .\dfrac{1}{{\cot 89^\circ }}\cot 88^\circ \dfrac{1}{{\cot 88^\circ }}.\cot 87^\circ .\dfrac{1}{{\cot 87^\circ }}...\cot 46^\circ .\dfrac{1}{{\cot 46^\circ }})(\tan 45^\circ )
Here, we will put the value of tan45=1\tan 45^\circ = 1 and also cancel out similar terms
=1.1.1.1.11n= 1.1.1 \ldots .1.1 \Rightarrow {1^n}
=1= 1
Hence the result of the above series is 1. So option b is the right option.