Solveeit Logo

Question

Question: The value of \(\tan {1^\circ}.\tan {2^\circ}.\tan {3^\circ}....................\tan {89^\circ}\) is:...

The value of tan1.tan2.tan3....................tan89\tan {1^\circ}.\tan {2^\circ}.\tan {3^\circ}....................\tan {89^\circ} is:
A) 00
B) 11
C) 22
D) 12\dfrac{1}{2}

Explanation

Solution

According to given in the question we have to determine the value of tan1.tan2.tan3....................tan89\tan {1^\circ}.\tan {2^\circ}.\tan {3^\circ}....................\tan {89^\circ} so, to solve the given trigonometric expression we have to use the formula as mentioned below:

Formula used: tan(90θ)=cotθ...................(A) \Rightarrow \tan ({90^\circ} - \theta ) = \cot \theta ...................(A)
cotθ=1tanθ.................(B)\Rightarrow \cot \theta = \dfrac{1}{{\tan \theta }}.................(B)
Now, we have to convert the trigonometric terms of the given trigonometric expression,
tan1=tan(9089) tan1=cot89 tan1=1tan89 \Rightarrow \tan {1^\circ} = \tan ({90^\circ} - {89^\circ}) \\\ \Rightarrow \tan {1^\circ} = \cot {89^\circ} \\\ \Rightarrow \tan {1^\circ} = \dfrac{1}{{\tan {{89}^\circ}}}
Now, same as we have to convert all the remaining trigonometric terms and eliminate the terms which can be eliminated.

Complete step-by-step solution:
Step 1: First of all we have to use the formula (A) as mentioned in the solution hint to convert the terms in the given trigonometric expression,
tan(9089).tan(9088).tan(9087)............tan87.tan88.tan89 cot89.cot88.cot87.....................tan87.tan88.tan89...................(1) \Rightarrow \tan ({90^\circ} - {89^\circ}).\tan ({90^\circ} - {88^\circ}).\tan ({90^\circ} - {87^\circ})............\tan {87^\circ}.\tan {88^\circ}.\tan {89^\circ} \\\ \Rightarrow \cot {89^\circ}.\cot {88^\circ}.\cot {87^\circ}.....................\tan {87^\circ}.\tan {88^\circ}.\tan {89^\circ}...................(1)
Step 2: Now, to solve the expression (1) above we have to use the formula (B) as mentioned in the solution hint.
1tan89.1tan88.1tan87.....................tan87.tan88.tan89\Rightarrow \dfrac{1}{{\tan {{89}^\circ}}}.\dfrac{1}{{\tan {{88}^\circ}}}.\dfrac{1}{{\tan {{87}^\circ}}}.....................\tan {87^\circ}.\tan {88^\circ}.\tan {89^\circ}...…………….(2)
Step 3: Now, on eliminating all the terms as obtained in the expression (2),
= 1
Final solution: Hence, with the help of formula (A) and (B) as mentioned in the solution hint we have obtained the value of tan1.tan2.tan3....................tan89\tan {1^\circ}.\tan {2^\circ}.\tan {3^\circ}....................\tan {89^\circ}= 1.

Therefore option (B) is correct.

Note: It is necessary to convert the trigonometric terms such as tanθ\tan \theta to cotθ\cot \theta which can be converted with the help of the formula tan(90θ)=cotθ\tan ({90^\circ} - \theta ) = \cot \theta
It is necessary to eliminate the terms in the obtained trigonometric expression which can be eliminate after converting tanθ\tan \theta to cotθ\cot \theta