Solveeit Logo

Question

Question: The value of \({{\tan }^{-1}}1+{{\tan }^{-1}}2+{{\tan }^{-1}}3\) is (a) 0 (b) 1 (c) \(\pi \) ...

The value of tan11+tan12+tan13{{\tan }^{-1}}1+{{\tan }^{-1}}2+{{\tan }^{-1}}3 is
(a) 0
(b) 1
(c) π\pi
(d) π-\pi

Explanation

Solution

Hint: Use the inverse trigonometric formula tan1x+tan1y=π+tan1(x+y1xy){{\tan }^{-1}}x+{{\tan }^{-1}}y=\pi +{{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right) if xy>1xy>1 and tan1(x)=tan1x{{\tan }^{-1}}\left( -x \right)= -{{\tan }^{-1}}x to simplify the given expression. Cancel out the common terms to calculate the exact value of the given trigonometric expression.

Complete step by step answer:
We have to calculate the value of tan11+tan12+tan13{{\tan }^{-1}}1+{{\tan }^{-1}}2+{{\tan }^{-1}}3. We will simplify the given expression using the trigonometric identity.
We know the trigonometric identity for the inverse of tangent function tan1x+tan1y=π+tan1(x+y1xy){{\tan }^{-1}}x+{{\tan }^{-1}}y=\pi +{{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right) if xy>1xy>1.
Substituting x=1,y=3x=1,y=3 in the above formula, we have tan11+tan13=π+tan1(1+311×3){{\tan }^{-1}}1+{{\tan }^{-1}}3=\pi +{{\tan }^{-1}}\left( \dfrac{1+3}{1-1\times 3} \right) as 1×3=3>11\times 3=3>1.
Simplifying the above expression, we have tan11+tan13=π+tan1(1+311×3)=π+tan1(413)=π+tan1(42)=π+tan1(2).....(1){{\tan }^{-1}}1+{{\tan }^{-1}}3=\pi +{{\tan }^{-1}}\left( \dfrac{1+3}{1-1\times 3} \right)=\pi +{{\tan }^{-1}}\left( \dfrac{4}{1-3} \right)=\pi +{{\tan }^{-1}}\left( \dfrac{4}{-2} \right)=\pi +{{\tan }^{-1}}\left( -2 \right).....\left( 1 \right).
Using equation (1), we can rewrite the given trigonometric expression as tan11+tan12+tan13=tan12+π+tan1(2).....(2){{\tan }^{-1}}1+{{\tan }^{-1}}2+{{\tan }^{-1}}3={{\tan }^{-1}}2+\pi +{{\tan }^{-1}}\left( -2 \right).....\left( 2 \right).
We know the trigonometric identity tan1(x)=tan1x{{\tan }^{-1}}\left( -x \right) = -{{\tan }^{-1}}x.
Substituting x=2x=2 in the above equation, we have tan1(2)=tan12.....(3){{\tan }^{-1}}\left( -2 \right)=-{{\tan }^{-1}}2.....\left( 3 \right).
Substituting equation (3) in equation (2), we have tan11+tan12+tan13=tan12+π+tan1(2)=tan12+πtan12{{\tan }^{-1}}1+{{\tan }^{-1}}2+{{\tan }^{-1}}3={{\tan }^{-1}}2+\pi +{{\tan }^{-1}}\left( -2 \right)={{\tan }^{-1}}2+\pi -{{\tan }^{-1}}2.
Simplifying the above expression, we have tan11+tan12+tan13=tan12+πtan12=π{{\tan }^{-1}}1+{{\tan }^{-1}}2+{{\tan }^{-1}}3={{\tan }^{-1}}2+\pi -{{\tan }^{-1}}2=\pi .
Hence, the value of the trigonometric expression tan11+tan12+tan13{{\tan }^{-1}}1+{{\tan }^{-1}}2+{{\tan }^{-1}}3 is π\pi , which is option (c).
Trigonometric functions are real functions that relate any angle of a right-angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine, and tangent. However, we can also use their reciprocals, i.e., cosecant, secant, and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane.

Note: One must be careful while using the inverse trigonometric formula tan1x+tan1y=π+tan1(x+y1xy){{\tan }^{-1}}x+{{\tan }^{-1}}y=\pi +{{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right) if xy>1xy>1 as the formula shows different natures for different values of xy. We can also solve this question by calculating the value of each of the terms and then substituting it in the given expression.