Solveeit Logo

Question

Question: The value of \(\tan {1^0}.\tan {2^0}.\tan {3^0}........\tan {89^0}\) is A. 0 B. 1 C. Infinity ...

The value of tan10.tan20.tan30........tan890\tan {1^0}.\tan {2^0}.\tan {3^0}........\tan {89^0} is
A. 0
B. 1
C. Infinity
D. None

Explanation

Solution

Hint: Here we will find the number of terms in the given equation and apply trigonometry formulae to find the value.

Complete step-by-step answer:

As you know that \tan (90 - \theta ) = \cot \theta {\text{ & }}\tan \theta .\cot \theta = 1
So you have to find out the value of tan10.tan20.tan30........tan890\tan {1^0}.\tan {2^0}.\tan {3^0}........\tan {89^0}.
tan10.tan20.tan30........tan870.tan880.tan890 tan10.tan20.tan30........tan(90030).tan(90020).tan(90010) tan10.tan20.tan30........cot30.cot20.cot10  \Rightarrow \tan {1^0}.\tan {2^0}.\tan {3^0}........\tan {87^0}.\tan {88^0}.\tan {89^0} \\\ \Rightarrow \tan {1^0}.\tan {2^0}.\tan {3^0}........\tan ({90^0} - {3^0}).\tan ({90^0} - {2^0}).\tan ({90^0} - {1^0}) \\\ \Rightarrow \tan {1^0}.\tan {2^0}.\tan {3^0}........\cot {3^0}.\cot {2^0}.\cot {1^0} \\\
The number of terms from (1, 2, 3, 4………………………to 89) will be
First term is 1, last term is 89, and common difference is 1.It forms an A.P
89=1+(n1)1 n=89  89 = 1 + (n - 1)1 \\\ n = 89 \\\
Which is odd, Therefore mid-term of series is
1+892=45\Rightarrow \dfrac{{1 + 89}}{2} = 45
tan10.tan20.tan30........cot30.cot20.cot10 (tan10×cot10)(tan20×cot20)(tan30×cot30)...........tan450 1×1×1..............×tan450 tan450=1  \Rightarrow \tan {1^0}.\tan {2^0}.\tan {3^0}........\cot {3^0}.\cot {2^0}.\cot {1^0} \\\ \Rightarrow (\tan {1^0} \times \cot {1^0})(\tan {2^0} \times \cot {2^0})(\tan {3^0} \times \cot {3^0})...........\tan {45^0} \\\ \Rightarrow 1 \times 1 \times 1.............. \times \tan {45^0} \\\ \Rightarrow \tan {45^0} = 1 \\\
So, the correct answer is option B.

Note: In this type of question always remember trigonometry properties, it will help you in finding your desired answers.