Solveeit Logo

Question

Question: The value of <sup>47</sup>C<sub>4</sub> + \(\sum_{r = 1}^{5}{(52 - r)C_{3}}\)...

The value of 47C4 + r=15(52r)C3\sum_{r = 1}^{5}{(52 - r)C_{3}}

A

53C353C_{3}

B

52C452C_{4}

C

52C552C_{5}

D

None of these

Answer

52C452C_{4}

Explanation

Solution

47C4 + r=15(52r)C3\sum_{r = 1}^{5}{(52 - r)C_{3}}

47C4 + 51C3 + 50C3 + 49C3 + 48C3 + 47C3\Rightarrow \underset{}{\overset{\text{47}C_{4}\text{ +}\text{ }^{\text{51}}C_{3}\text{ +}\text{ }^{\text{50}}C_{3}\text{ +}\text{ }^{\text{49}}C_{3}\text{ +}\text{ }^{\text{48}}C_{3}\text{ +}\text{ }^{\text{47}}C_{3}}{︸}}

48C4

48C4 + 51C3 + 50C3 + 49C3 + 48C3\Rightarrow \underset{}{\overset{\text{48}C_{4}\text{ +}\text{ }^{\text{51}}C_{3}\text{ +}\text{ }^{\text{50}}C_{3}\text{ +}\text{ }^{\text{49}}C_{3}\text{ +}\text{ }^{\text{48}}C_{3}}{︸}}

49C4

Similarly proceeding we get 52C4.