Solveeit Logo

Question

Question: The value of $\sum_{r=0}^{2024} (-1)^r {^{2024}C_r} (2024-r)^{2024}$...

The value of r=02024(1)r2024Cr(2024r)2024\sum_{r=0}^{2024} (-1)^r {^{2024}C_r} (2024-r)^{2024}

Answer

2024!

Explanation

Solution

The given sum is r=02024(1)r2024Cr(2024r)2024\sum_{r=0}^{2024} (-1)^r {^{2024}C_r} (2024-r)^{2024}.

Let n=2024n=2024. The sum becomes r=0n(1)rnCr(nr)n\sum_{r=0}^{n} (-1)^r {^nC_r} (n-r)^n.

Change the index of summation from rr to k=nrk=n-r. When r=0r=0, k=nk=n. When r=nr=n, k=0k=0. Also, r=nkr=n-k.

The sum transforms to k=n0(1)nknCnkkn\sum_{k=n}^{0} (-1)^{n-k} {^nC_{n-k}} k^n.

Since nCnk=nCk{^nC_{n-k}} = {^nC_k}, and reversing the summation order, we get: k=0n(1)nknCkkn\sum_{k=0}^{n} (-1)^{n-k} {^nC_k} k^n.

This is a standard combinatorial identity, which equals n!n!.

This identity represents the nn-th forward difference of xnx^n evaluated at x=0x=0, i.e., Δnxnx=0=n!\Delta^n x^n |_{x=0} = n!.

It also represents the number of surjective functions from a set of nn elements to a set of nn elements, which is n!n!.

Substituting n=2024n=2024, the value of the sum is 2024!2024!.