Solveeit Logo

Question

Question: The value of \(\sum_{r = 1}^{n + 1}\left( \sum_{k = 1}^{n}{kC_{r - 1}} \right)\) where r,k, n ĪN is ...

The value of r=1n+1(k=1nkCr1)\sum_{r = 1}^{n + 1}\left( \sum_{k = 1}^{n}{kC_{r - 1}} \right) where r,k, n ĪN is equal to

A

2n+1

B

2n+1 –1

C

2n+1 –2

D

None of these

Answer

2n+1 –2

Explanation

Solution

r=1n+1(k=1nkCr1)\sum_{r = 1}^{n + 1}\left( \sum_{k = 1}^{n}{kC_{r - 1}} \right)= r=1n+1(k=1n(k+1CrkCr))\sum_{r = 1}^{n + 1}\left( \sum_{k = 1}^{n}\left( k + 1C_{r} -^{k}C_{r} \right) \right)

= r=1n+1(n+1Cr1Cr)\sum_{r = 1}^{n + 1}\left( n + 1C_{r} -^{1}C_{r} \right) = 2n+1 – 2