Question
Question: The value of \(\sum_{r = 1}^{n}{( - 1)^{r - 1}\left( 1 + \frac{1}{2} + \frac{1}{3} + .... + \frac{1}...
The value of ∑r=1n(−1)r−1(1+21+31+....+r1)nCr is equal to
A
–1
B
r1
C
n1
D
−n31
Answer
n1
Explanation
Solution
∑(−1)r−1.nCr(11+21+31+....+r1)
= ∑((−1)r−1.nCr∫01(1+x+x2+...+xr−1)dx)
= ∑(−1)r−1.nCr∫01(1−x1−xr)dx
= ∫01∑r=1n1−x(−1)r−1.nCr−(−1)r−1.nCrxrdx
= ∫011−x−C0+1+(1−x)ndx= ∫01(1−x)n−1dx
= n1