Solveeit Logo

Question

Question: The value of \(\sum_{r = 1}^{n}{( - 1)^{r - 1}\left( 1 + \frac{1}{2} + \frac{1}{3} + .... + \frac{1}...

The value of r=1n(1)r1(1+12+13+....+1r)\sum_{r = 1}^{n}{( - 1)^{r - 1}\left( 1 + \frac{1}{2} + \frac{1}{3} + .... + \frac{1}{r} \right)}nCr is equal to

A

–1

B

1r\frac{1}{r}

C

1n\frac{1}{n}

D

1n3- \frac{1}{n^{3}}

Answer

1n\frac{1}{n}

Explanation

Solution

(1)r1.nCr(11+12+13+....+1r)\sum_{}^{}{( - 1)^{r - 1}.^{n}C_{r}\left( \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + .... + \frac{1}{r} \right)}

= ((1)r1.nCr01(1+x+x2+...+xr1)dx)\sum_{}^{}\left( ( - 1)^{r - 1}.^{n}C_{r}\int_{0}^{1}{(1 + x + x^{2} + ... + x^{r - 1})dx} \right)

= (1)r1.nCr01(1xr1x)dx\sum_{}^{}{( - 1)^{r - 1}.^{n}C_{r}\int_{0}^{1}\left( \frac{1 - x^{r}}{1 - x} \right)}dx

= 01r=1n(1)r1.nCr(1)r1.nCrxr1xdx\int_{0}^{1}{\sum_{r = 1}^{n}{\frac{( - 1)^{r - 1}.^{n}C_{r} - ( - 1)^{r - 1}.^{n}C_{r}x^{r}}{1 - x}dx}}

= 01C0+1+(1x)n1xdx\int_{0}^{1}{\frac{- C_{0} + 1 + (1 - x)^{n}}{1 - x}dx}= 01(1x)n1dx\int_{0}^{1}{(1 - x)^{n - 1}dx}

= 1n\frac{1}{n}