Solveeit Logo

Question

Question: The value of \(\sum_{r = 1}^{10}r.^{r}p_{r}\) is...

The value of r=110r.rpr\sum_{r = 1}^{10}r.^{r}p_{r} is

A

11P1111P_{11}

B

11P11111P_{11} - 1

C

11P11+111P_{11} + 1

D

None

Answer

11P11111P_{11} - 1

Explanation

Solution

\begin{matrix} r \end{matrix} \end{matrix} \Rightarrow r.^{r}P_{r} = r.\begin{matrix} \begin{matrix} r \end{matrix} \end{matrix}$$ **=** $(r + 1 - 1)\begin{matrix} \begin{matrix} r \end{matrix} \end{matrix} = (r + 1)\begin{matrix} \begin{matrix} r \end{matrix} \end{matrix} - \begin{matrix} \begin{matrix} r \end{matrix} \end{matrix}$ **=** $\begin{matrix} \begin{matrix} r + 1 \end{matrix} \end{matrix} - \begin{matrix} \begin{matrix} r \end{matrix} \end{matrix}$ $$\sum_{r = 1}^{10}{r.^{r}P_{r}} = \sum_{r = 1}^{10}\begin{matrix} r + 1 \end{matrix} - \begin{matrix} r \end{matrix}$$ = $\begin{matrix} 11 \end{matrix} - \begin{matrix} 1 \end{matrix}$ = $11P_{11} - 1$