Question
Question: The value of \(\sum_{r = 1}^{10}r.^{r}p_{r}\) is...
The value of ∑r=110r.rpr is
A
11P11
B
11P11−1
C
11P11+1
D
None
Answer
11P11−1
Explanation
Solution
\begin{matrix}
r
\end{matrix}
\end{matrix} \Rightarrow r.^{r}P_{r} = r.\begin{matrix}
\begin{matrix}
r
\end{matrix}
\end{matrix}$$
**=** $(r + 1 - 1)\begin{matrix}
\begin{matrix}
r
\end{matrix}
\end{matrix} = (r + 1)\begin{matrix}
\begin{matrix}
r
\end{matrix}
\end{matrix} - \begin{matrix}
\begin{matrix}
r
\end{matrix}
\end{matrix}$
**=** $\begin{matrix}
\begin{matrix}
r + 1
\end{matrix}
\end{matrix} - \begin{matrix}
\begin{matrix}
r
\end{matrix}
\end{matrix}$
$$\sum_{r = 1}^{10}{r.^{r}P_{r}} = \sum_{r = 1}^{10}\begin{matrix}
r + 1
\end{matrix} - \begin{matrix}
r
\end{matrix}$$
= $\begin{matrix}
11
\end{matrix} - \begin{matrix}
1
\end{matrix}$
= $11P_{11} - 1$