Solveeit Logo

Question

Question: The value of \(\sum_{r = 1}^{10}{r \cdot \frac{nC_{r}}{nC_{r - 1}}}\) is equal to...

The value of r=110rnCrnCr1\sum_{r = 1}^{10}{r \cdot \frac{nC_{r}}{nC_{r - 1}}} is equal to

A

5(2n – 9)

B

10n

C

9(n – 4)

D

None

Answer

5(2n – 9)

Explanation

Solution

r=110r.nCrnCr1\sum_{r = 1}^{10}{r.}\frac{nC_{r}}{nC_{r–1}}, r=110r.nr+1r\sum_{r = 1}^{10}{r.}\frac{n–r + 1}{r}, (n + 1) r=1101r=110r\sum_{r = 1}^{10}1–\sum_{r = 1}^{10}r

(n + 1) (10) – 10(10+1)2\frac{10(10 + 1)}{2} = 10n + 10 – 55

= 10n – 45 = 5 (2n – 9)