Solveeit Logo

Question

Question: The value of $\sum_{n=2}^{5} \left( \frac{^{32}C_{n-2}}{^{31}C_{n}+^{30}C_{n-1}+^{30}C_{n-2}} \right...

The value of n=25(32Cn231Cn+30Cn1+30Cn2)\sum_{n=2}^{5} \left( \frac{^{32}C_{n-2}}{^{31}C_{n}+^{30}C_{n-1}+^{30}C_{n-2}} \right) is

A

57[r=142r33r]\frac{5}{7} - \left[ \sum_{r=1}^{4} \frac{2r}{33-r} \right]

B

413[r=142r1332r]\frac{4}{13} - \left[ \sum_{r=1}^{4} \frac{2r-1}{33-2r} \right]

C

67[r=142r2133r]\frac{6}{7} - \left[ \sum_{r=1}^{4} \frac{2r^{2}-1}{33-r} \right]

D

1516[r=143r332r]\frac{15}{16} - \left[ \sum_{r=1}^{4} \frac{3r}{33-2r} \right]

Answer

57[r=142r33r]\frac{5}{7} - \left[ \sum_{r=1}^{4} \frac{2r}{33-r} \right]

Explanation

Solution

The given summation is n=25(32Cn231Cn+30Cn1+30Cn2)\sum_{n=2}^{5} \left( \frac{^{32}C_{n-2}}{^{31}C_{n}+^{30}C_{n-1}+^{30}C_{n-2}} \right).

We simplify the denominator using the identity NCK+NCK1=N+1CK^{N}C_{K} + ^{N}C_{K-1} = ^{N+1}C_{K}: 31Cn+30Cn1+30Cn2=31Cn+(30Cn1+30Cn2)=31Cn+31Cn1=32Cn^{31}C_{n}+^{30}C_{n-1}+^{30}C_{n-2} = ^{31}C_{n}+(^{30}C_{n-1}+^{30}C_{n-2}) = ^{31}C_{n}+^{31}C_{n-1} = ^{32}C_{n}.

So the general term of the summation is 32Cn232Cn\frac{^{32}C_{n-2}}{^{32}C_{n}}.

Using the definition of binomial coefficients or the ratio of consecutive binomial coefficients, we have: 32Cn232Cn=32!(n2)!(32(n2))!32!n!(32n)!=n!(32n)!(n2)!(34n)!=n(n1)(n2)!(32n)!(n2)!(34n)(33n)(32n)!=n(n1)(34n)(33n)\frac{^{32}C_{n-2}}{^{32}C_{n}} = \frac{\frac{32!}{(n-2)!(32-(n-2))!}}{\frac{32!}{n!(32-n)!}} = \frac{n!(32-n)!}{(n-2)!(34-n)!} = \frac{n(n-1)(n-2)!(32-n)!}{(n-2)!(34-n)(33-n)(32-n)!} = \frac{n(n-1)}{(34-n)(33-n)}.

The summation is n=25n(n1)(34n)(33n)\sum_{n=2}^{5} \frac{n(n-1)}{(34-n)(33-n)}.

We evaluate the terms for n=2,3,4,5n=2, 3, 4, 5:

For n=2n=2: 2(1)(342)(332)=232×31=2992=1496\frac{2(1)}{(34-2)(33-2)} = \frac{2}{32 \times 31} = \frac{2}{992} = \frac{1}{496}.

For n=3n=3: 3(2)(343)(333)=631×30=6930=1155\frac{3(2)}{(34-3)(33-3)} = \frac{6}{31 \times 30} = \frac{6}{930} = \frac{1}{155}.

For n=4n=4: 4(3)(344)(334)=1230×29=12870=2145\frac{4(3)}{(34-4)(33-4)} = \frac{12}{30 \times 29} = \frac{12}{870} = \frac{2}{145}.

For n=5n=5: 5(4)(345)(335)=2029×28=20812=5203\frac{5(4)}{(34-5)(33-5)} = \frac{20}{29 \times 28} = \frac{20}{812} = \frac{5}{203}.

The sum is 1496+1155+2145+5203\frac{1}{496} + \frac{1}{155} + \frac{2}{145} + \frac{5}{203}.

To sum these fractions, we find a common denominator. 496=16×31496 = 16 \times 31, 155=5×31155 = 5 \times 31, 145=5×29145 = 5 \times 29, 203=7×29203 = 7 \times 29.

LCM = 16×5×7×29×31=50344016 \times 5 \times 7 \times 29 \times 31 = 503440.

Sum =1×(5×7×29)503440+1×(16×7×29)503440+2×(16×7×31)503440+5×(16×5×31)503440= \frac{1 \times (5 \times 7 \times 29)}{503440} + \frac{1 \times (16 \times 7 \times 29)}{503440} + \frac{2 \times (16 \times 7 \times 31)}{503440} + \frac{5 \times (16 \times 5 \times 31)}{503440} =1015+3248+6944+12400503440=23607503440= \frac{1015 + 3248 + 6944 + 12400}{503440} = \frac{23607}{503440}.

Now we evaluate option A: 57[r=142r33r]\frac{5}{7} - \left[ \sum_{r=1}^{4} \frac{2r}{33-r} \right].

The summation part is r=142r33r=2(1)331+2(2)332+2(3)333+2(4)334\sum_{r=1}^{4} \frac{2r}{33-r} = \frac{2(1)}{33-1} + \frac{2(2)}{33-2} + \frac{2(3)}{33-3} + \frac{2(4)}{33-4} =232+431+630+829=116+431+15+829= \frac{2}{32} + \frac{4}{31} + \frac{6}{30} + \frac{8}{29} = \frac{1}{16} + \frac{4}{31} + \frac{1}{5} + \frac{8}{29}.

We sum these fractions: 116+15+431+829=5+1680+4×29+8×3131×29=2180+116+248899=2180+364899\frac{1}{16} + \frac{1}{5} + \frac{4}{31} + \frac{8}{29} = \frac{5+16}{80} + \frac{4 \times 29 + 8 \times 31}{31 \times 29} = \frac{21}{80} + \frac{116 + 248}{899} = \frac{21}{80} + \frac{364}{899}.

Common denominator for these is 80×899=7192080 \times 899 = 71920.

21×899+364×8071920=18879+2912071920=4799971920\frac{21 \times 899 + 364 \times 80}{71920} = \frac{18879 + 29120}{71920} = \frac{47999}{71920}.

Option A value =574799971920= \frac{5}{7} - \frac{47999}{71920}.

Common denominator for these is 7×71920=5034407 \times 71920 = 503440.

Option A value =5×719207×47999503440=359600335993503440=23607503440= \frac{5 \times 71920 - 7 \times 47999}{503440} = \frac{359600 - 335993}{503440} = \frac{23607}{503440}.

The value of the summation is equal to the value of option A.