Question
Question: The value of $\sum_{n=2}^{5} \left( \frac{^{32}C_{n-2}}{^{31}C_{n}+^{30}C_{n-1}+^{30}C_{n-2}} \right...
The value of ∑n=25(31Cn+30Cn−1+30Cn−232Cn−2) is

75−[∑r=1433−r2r]
134−[∑r=1433−2r2r−1]
76−[∑r=1433−r2r2−1]
1615−[∑r=1433−2r3r]
75−[∑r=1433−r2r]
Solution
The given summation is ∑n=25(31Cn+30Cn−1+30Cn−232Cn−2).
We simplify the denominator using the identity NCK+NCK−1=N+1CK: 31Cn+30Cn−1+30Cn−2=31Cn+(30Cn−1+30Cn−2)=31Cn+31Cn−1=32Cn.
So the general term of the summation is 32Cn32Cn−2.
Using the definition of binomial coefficients or the ratio of consecutive binomial coefficients, we have: 32Cn32Cn−2=n!(32−n)!32!(n−2)!(32−(n−2))!32!=(n−2)!(34−n)!n!(32−n)!=(n−2)!(34−n)(33−n)(32−n)!n(n−1)(n−2)!(32−n)!=(34−n)(33−n)n(n−1).
The summation is ∑n=25(34−n)(33−n)n(n−1).
We evaluate the terms for n=2,3,4,5:
For n=2: (34−2)(33−2)2(1)=32×312=9922=4961.
For n=3: (34−3)(33−3)3(2)=31×306=9306=1551.
For n=4: (34−4)(33−4)4(3)=30×2912=87012=1452.
For n=5: (34−5)(33−5)5(4)=29×2820=81220=2035.
The sum is 4961+1551+1452+2035.
To sum these fractions, we find a common denominator. 496=16×31, 155=5×31, 145=5×29, 203=7×29.
LCM = 16×5×7×29×31=503440.
Sum =5034401×(5×7×29)+5034401×(16×7×29)+5034402×(16×7×31)+5034405×(16×5×31) =5034401015+3248+6944+12400=50344023607.
Now we evaluate option A: 75−[∑r=1433−r2r].
The summation part is ∑r=1433−r2r=33−12(1)+33−22(2)+33−32(3)+33−42(4) =322+314+306+298=161+314+51+298.
We sum these fractions: 161+51+314+298=805+16+31×294×29+8×31=8021+899116+248=8021+899364.
Common denominator for these is 80×899=71920.
7192021×899+364×80=7192018879+29120=7192047999.
Option A value =75−7192047999.
Common denominator for these is 7×71920=503440.
Option A value =5034405×71920−7×47999=503440359600−335993=50344023607.
The value of the summation is equal to the value of option A.