Question
Question: The value of \(\sum_{n = 1}^{N}U_{n}\), if \(U_{n} = \left| \begin{matrix} n & 1 & 5 \\ n^{2} & 2N +...
The value of ∑n=1NUn, if Un=nn2n312N+13N252N+13N is
A
0
B
1
C
–1
D
None of these
Answer
0
Explanation
Solution
\frac{N(N + 1)}{2} & 1 & 5 \\
\frac{N(N + 1)(2N + 1)}{6} & 2N + 1 & 2N + 1 \\
\left\{ \frac{N(N + 1)}{2} \right\}^{2} & 3N^{2} & 3N
\end{matrix} \right|} = \frac{N(N + 1)}{12}\left| \begin{matrix}
6 & 1 & 5 \\
4N + 2 & 2N + 1 & 2N + 1 \\
3N(N + 1) & 3N^{2} & 3N
\end{matrix} \right|$$
Applying $C_{3} \rightarrow C_{3} + C_{2}$
$= \frac{N(N + 1)}{12}\left| \begin{matrix}
6 & 1 & 6 \\
4N + 2 & 2N + 1 & 4N + 2 \\
3N(N + 1) & 3N^{2} & 3N(N + 1)
\end{matrix} \right|$ = 0
[$\because C_{1}$ and $C_{3}$ are identical]