Question
Question: The value of \(\sum_{n = 0}^{100}i^{n!}\) equals (where i = \(\sqrt{- 1}\))...
The value of ∑n=0100in! equals (where i = −1)
A
–1
B
I
C
2i + 95
D
97 + i
Answer
2i + 95
Explanation
Solution
Sol. S = ∑n=0100(i)n
S = (i)0+(i)1+(i)2+...
= i + i – 1 + i6 + i24 + (i)5+(i)6 + .....+ (i)100
= 95 + 2i